首页> 外文OA文献 >Cross-layer energy optimisation of routing protocols in wireless sensor networks
【2h】

Cross-layer energy optimisation of routing protocols in wireless sensor networks

机译:无线传感器网络中路由协议的跨层能量优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent technological developments in embedded systems have led to the emergence of a new class of networks, known asWireless Sensor Networks (WSNs), where individual nodes cooperate wirelessly with each other with the goal of sensing and interacting with the environment.Many routing protocols have been developed tomeet the unique and challenging characteristics of WSNs (notably very limited power resources to sustain an expected lifetime of perhapsudyears, and the restricted computation, storage and communication capabilities of nodes that are nonetheless required to support large networks and diverse applications). No standards for routing have been developed yet for WSNs, nor has any protocol gained a dominant position among the research community.udRouting has a significant influence on the overall WSN lifetime, and providing an energy efficient routing protocol remains an open problem. This thesis addressesudthe issue of designing WSN routing methods that feature energy efficiency. A common time reference across nodes is required in mostWSN applications. It is needed, for example, to time-stamp sensor samples and for duty cycling of nodes. Alsomany routing protocols require that nodes communicate according to some predefined schedule. However, independent distribution of the time information, without considering the routing algorithm schedule or network topology may lead to a failure of the synchronisation protocol. This was confirmed empirically, and was shown to result in loss of connectivity. This can be avoided byudintegrating the synchronisation service into the network layer with a so-called cross-layer approach. This approach introduces interactions between the layers of a conventional layered network stack, so that the routing layer may share information with other layers. I explore whether energy efficiency can be enhanced through the use of cross-layer optimisations and present three novel cross-layer routing algorithms. The first protocol, designed for hierarchical, cluster based networksudand called CLEAR (Cross Layer Efficient Architecture for Routing), uses the routing algorithm to distribute time information which can be used for efficient duty cycling of nodes. The second method - called RISS (Routing IntegratedudSynchronization Service) - integrates time synchronization into the network layer and is designed to work well in flat, non-hierarchical network topologies. The third method - called SCALE (Smart Clustering Adapted LEACH) - addressesudthe influence of the intra-cluster topology on the energy dissipation of nodes. I also investigate the impact of the hop distance on network lifetime and propose a method of determining the optimal location of the relay node (the node through which data is routed in a two-hop network). I also address the problem of predicting the transition region (the zone separating the region where all packetsudcan be received and that where no data can be received) and I describe a way of preventing the forwarding of packets through relays belonging in this transition region.udI implemented and tested the performance of these solutions in simulations and also deployed these routing techniques on sensor nodes using TinyOS. I compared the average power consumption of the nodes and the precision of time synchronization with the corresponding parameters of a number of existing algorithms. All proposed schemes extend the network lifetime and due to their lightweight architecture they are very efficient on WSN nodes with constrained resources. Hence it is recommended that a cross-layer approach should be a feature of any routing algorithm for WSNs.
机译:嵌入式系统的最新技术发展催生了一种称为无线传感器网络(WSN)的新型网络,其中各个节点之间相互进行无线协作,以感知并与环境进行交互。为了满足WSN独特且具有挑战性的特点(特别是非常有限的电力资源来维持预期的 udyear寿命,以及节点的计算,存储和通信能力受到限制,而这些节点仍然需要支持大型网络和多样化的应用)而开发出来。尚未为WSN制定路由标准,也没有任何协议在研究界中占据主导地位。 udRouting对WSN的整体生命周期具有重大影响,提供节能路由协议仍然是一个未解决的问题。本论文解决了设计具有能效的WSN路由方法的问题。在大多数WSN应用程序中,需要跨节点的公共时间参考。例如,需要对传感器样本进行时间戳记以及节点的占空比。另外,许多路由协议都要求节点根据一些预定义的时间表进行通信。但是,在不考虑路由算法时间表或网络拓扑的情况下独立分配时间信息可能会导致同步协议失败。这已通过经验得到证实,并显示会导致连接中断。通过使用所谓的跨层方法将同步服务集成到网络层中,可以避免这种情况。该方法引入了常规分层网络堆栈的各层之间的交互,以便路由层可以与其他层共享信息。我探讨了是否可以通过使用跨层优化来提高能源效率,并提出三种新颖的跨层路由算法。第一种协议是为分层的,基于集群的网络设计的,被称为CLEAR(路由的跨层高效体系结构),它使用路由算法来分发时间信息,该信息可用于节点的有效占空比。第二种方法称为RISS(路由集成 udSynchronization服务),它将时间同步集成到网络层中,旨在在平坦的非分层网络拓扑中很好地工作。第三种方法称为SCALE(智能群集自适应LEACH),用于解决群集内部拓扑对节点能耗的影响。我还研究了跳距对网络寿命的影响,并提出了一种确定中继节点(在两跳网络中路由数据的节点)的最佳位置的方法。我还解决了预测过渡区域(将所有数据包 ud可以接收的区域与没有数据可以接收的区域分开的区域)的问题,并描述了一种防止通过该过渡区域中的中继转发数据包的方法。 udI在仿真中实现并测试了这些解决方案的性能,还使用TinyOS在传感器节点上部署了这些路由技术。我将节点的平均功耗和时间同步的精度与许多现有算法的相应参数进行了比较。所有提出的方案都延长了网络寿命,并且由于它们的轻量级体系结构,它们在资源受限的WSN节点上非常有效。因此,建议将跨层方法作为WSN的任何路由算法的功能。

著录项

  • 作者

    Fedor Szymon;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号