首页> 外文OA文献 >Dependency graph-based statistical machine translation
【2h】

Dependency graph-based statistical machine translation

机译:基于依赖图的统计机器翻译

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical Machine Translation has been shown to benefit from complex linguistic structures. However, previous work mainly focuses on sequences and trees. In this thesis, we build dependency graphs which are constructed from dependency trees and uniformly represent both dependency relations and sequential relations, including bigram relations and sibling relations. We propose translation models to translate these graphs into target strings and conduct experiments on Chinese--English and German--English translation tasks.udAs a motivation, we firstly present a pseudo forest-to-string model which improves a dependency tree-to-string model by dependency decomposition. The decomposition takes sibling relations into consideration which results in more rules being used and thus a higher phrase coverage. Experiments show that such decomposition is beneficial to translation performance. Integrating phrasal rules further improves our model.udThen, we propose a segmentational graph-based translation model. It segments graphs into subgraphs and generates translations from left to right by combining translations of these subgraphs. The graphs explicitly combine dependency relations and bigram relations. In experiments, the graph-based model outperforms both the phrase-based model and treelet-based model. In addition, we improve this model by using a graph segmentation model to take source context into consideration.udFurthermore, inspired by using tree grammars to translate trees, we propose recursive graph-based translation models by using graph grammars. An edge replacement grammar is used to translate dependency-edge graphs which are converted from dependency trees by labeling edges to naturally take sibling relations into consideration. A node replacement grammar is used to translate dependency-sibling graphs which explicitly add sibling links to dependency trees. Experiments show that our models are significantly better than the hierarchical phrase-based model.
机译:统计机器翻译已被证明受益于复杂的语言结构。但是,先前的工作主要集中在序列和树上。在本文中,我们建立了依赖关系图,该关系图是由依赖关系树构建的,并统一表示依赖关系和顺序关系,包括二元关系和兄弟关系。我们建议使用翻译模型将这些图翻译为目标字符串,并进行汉英英语和德英翻译任务的实验。 ud为此,我们首先提出一种伪森林到字符串模型,该模型改进了从树到树的依赖关系。 -string模型通过依赖分解。分解考虑了同级关系,这导致使用更多规则,因此短语覆盖率更高。实验表明,这种分解对翻译性能是有益的。集成短语短语规则可以进一步改进我们的模型。 ud然后,我们提出了一种基于分段图的翻译模型。它将图分割成子图,并通过组合这些子图的翻译从左到右生成翻译。这些图明确地将依赖关系和二元组关系组合在一起。在实验中,基于图的模型优于基于短语的模型和基于小树的模型。此外,我们通过使用图分割模型来考虑源上下文来改进此模型。 ud此外,受使用树语法翻译树的启发,我们提出了使用图语法的基于递归图的翻译模型。边缘替换语法用于转换依赖关系边缘图,该依赖关系边缘图通过标记边缘从依赖关系树转换而来,以自然地考虑同级关系。节点替换语法用于转换依赖项同级图,这些关系显式将同级链接添加到依赖项树。实验表明,我们的模型明显优于基于层次短语的模型。

著录项

  • 作者

    Li Liangyou;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号