首页> 外文OA文献 >A framework for sign language recognition using support vector machines and active learning for skin segmentation and boosted temporal sub-units
【2h】

A framework for sign language recognition using support vector machines and active learning for skin segmentation and boosted temporal sub-units

机译:使用支持向量机和用于皮肤分割和增强时间子单元的主动学习的手语识别框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation describes new techniques that can be used in a sign language recognition (SLR) system, and more generally in human gesture systems. Any SLR system consists of three main components: Skin detector, Tracker, and Recognizer. The skin detector is responsible for segmenting skin objects like the face and hands from video frames. The tracker keeps track of the hand location (more specifically the bounding box) and detects any occlusions that might happen between any skin objects. Finally, the recognizer tries to classify the performed sign into one of the sign classes in our vocabulary using the set of features and information provided by the tracker.ududIn this work, we propose a new technique for skin segmentation using SVM (support vector machine) active learning combined with region segmentation information. Having segmented the face and hands, we need to track them across the frames. So, we have developed a unified framework for segmenting and tracking skin objects and detecting occlusions, where both components of segmentation and tracking help each other. Good tracking helps to reduce the search space for skin objects, and accurate segmentation increases the overall tracker accuracy.ududInstead of dealing with the whole sign for recognition, the sign can be broken down into elementary subunits, which are far less in number than the total number of signs in the vocabulary. This motivated us to propose a novel algorithm to model and segment these subunits, then try to learn the informative combinations of subunits/features using a boosting framework. Our results reached above 90% recognition rate using very few training samples.
机译:本文介绍了可用于手语识别(SLR)系统中的新技术,并且更广泛地用于人类手势系统中。任何SLR系统都由三个主要组件组成:皮肤检测器,跟踪器和识别器。皮肤检测器负责从视频帧中分割出皮肤对象,例如面部和手部。跟踪器跟踪手的位置(更具体地说是边界框),并检测在任何皮肤对象之间可能发生的任何遮挡。最后,识别器尝试使用跟踪器提供的一组功能和信息将执行的手势分类为词汇表中的手势类别之一。 ud ud在这项工作中,我们提出了一种使用SVM进行皮肤分割的新技术(支持向量机)主动学习结合区域分割信息。分割了脸部和手部之后,我们需要在整个帧中进行跟踪。因此,我们开发了一个用于分割和跟踪皮肤对象以及检测遮挡的统一框架,其中分割和跟踪的两个组件相互帮助。良好的跟踪有助于减少对皮肤对象的搜索空间,准确的分段可提高跟踪器的整体准确性。 ud ud除了可以处理整个符号以进行识别之外,还可以将符号分解为基本的子单元,这些子单元的数量要少得多比词汇表中的符号总数多。这促使我们提出了一种新颖的算法来对这些亚基进行建模和分段,然后尝试使用增强框架学习亚基/功能的信息性组合。使用很少的训练样本,我们的结果达到了90%以上的识别率。

著录项

  • 作者

    Awad George M.;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号