首页> 外文OA文献 >Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data
【2h】

Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data

机译:结合多个分类器,对飞行数据异常的影响进行定量排序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel two phase method that combines one class support vector machine classifiers using combination rules to quantitatively assess the degree of abnormality at various heights during individual aircraft descents and also over the whole descent. Whilst classifiers have been combined before in the literature with success, it is the first time they have been applied to the problem of analysing the act of descending of commercial jet aircraft. The method is tested on artificial Gaussian data and flight data from an industrial partner, Flight Data Services Ltd., the world's leading flight data analysis provider, with promising results.
机译:本文提出了一种新颖的两阶段方法,该方法使用组合规则组合一类支持向量机分类器,以定量评估各个飞机下降过程中以及整个下降过程中各种高度的异常程度。尽管分类器以前在文献中已经成功地结合在一起,但这是第一次将它们用于分析商用喷气飞机降落行为的问题。该方法在人工高斯数据和来自工业合作伙伴Flight Data Services Ltd.(世界领先的飞行数据分析提供商)的飞行数据上进行了测试,并获得了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号