首页> 外文OA文献 >Computational methods for processing ground penetrating radar data
【2h】

Computational methods for processing ground penetrating radar data

机译:处理探地雷达数据的计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this work was to investigate signal processing and analysistechniques for Ground Penetrating Radar (GPR) and its use in civilengineering and construction industry. GPR is the general term applied totechniques which employ radio waves, typically in the Mega Hertz and GigaHertz range, to map structures and features buried in the ground or in manmadestructures. GPR measurements can suffer from large amount of noise.This is primarily caused by interference from other radio-wave-emittingdevices (e.g., cell phones, radios, etc.) that are present in the surroundingarea of the GPR system during data collection. In addition to noise, presenceof clutter – reflections from other non-target objects buried underground inthe vicinity of the target can make GPR measurement difficult to understandand interpret, even for the skilled human, GPR analysts.This thesis is concerned with the improvements and processes that canbe applied to GPR data in order to enhance target detection andcharacterisation process particularly with multivariate signal processingtechniques. Those primarily include Principal Component Analysis (PCA)and Independent Component Analysis (ICA). Both techniques have beeninvestigated, implemented and compared regarding their abilities to separatethe target originating signals from the noise and clutter type signals present in the data. Combination of PCA and ICA (SVDPICA) and two-dimensionalPCA (2DPCA) are the specific approaches adopted and further developed inthis work. Ability of those methods to reduce the amount of clutter andunwanted signals present in GPR data have been investigated and reportedin this thesis, suggesting that their use in automated analysis of GPR imagesis a possibility.Further analysis carried out in this work concentrated on analysing theperformance of developed multivariate signal processing techniques and atthe same time investigating the possibility of identifying and characterisingthe features of interest in pre-processed GPR images. The driving ideabehind this part of work was to extract the resonant modes present in theindividual traces of each GPR image and to use properties of those poles tocharacterise target. Three related but different methods have beenimplemented and applied in this work – Extended Prony, Linear PredictionSingular Value Decomposition and Matrix Pencil methods. In addition tothese approaches, PCA technique has been used to reduce dimensionality ofextracted traces and to compare signals measured in various experimentalsetups. Performance analysis shows that Matrix Pencil offers the bestresults.
机译:这项工作的目的是研究探地雷达(GPR)的信号处理和分析技术及其在土木工程和建筑业中的应用。 GPR是应用于通常使用兆赫兹(Mega Hertz)和千兆赫兹(GigaHertz)范围的无线电波来绘制埋在地下或人造结构中的结构和特征的技术的总称。 GPR测量可能会受到大量噪声的影响,这主要是由数据收集过程中GPR系统周围区域中存在的其他无线电波发射设备(例如手机,无线电等)产生的干扰引起的。除了噪声之外,杂波的存在-埋在目标附近的其他非目标物体的反射也会使GPR测量值难以理解和理解,即使对于熟练的GPR分析人员而言。本论文关注的是改进和过程可以将其应用于GPR数据,以增强目标检测和特征化过程,尤其是在使用多元信号处理技术时。这些主要包括主成分分析(PCA)和独立成分分析(ICA)。已经对这两种技术进行了研究,实施和比较,它们具有将目标源信号与数据中存在的噪声和杂波类型信号分离的能力。 PCA和ICA(SVDPICA)以及二维PCA(2DPCA)的组合是本工作中采用和进一步发展的特定方法。本文研究并报道了这些方法减少GPR数据中杂波和不必要信号数量的能力,这表明它们有可能用于GPR图像的自动分析中。本工作进一步进行的分析集中在分析已开发的性能多元信号处理技术,同时研究了在预处理的GPR图像中识别和表征感兴趣特征的可能性。这部分工作背后的驱动思想是提取每个GPR图像的单个迹线中存在的共振模式,并利用这些极的特性来表征目标。三种相关但不同的方法已在本工作中实施和应用-扩展Prony,线性预测奇异值分解和矩阵笔方法。除这些方法外,PCA技术还用于降低提取迹线的维数并比较在各种实验设置下测得的信号。性能分析表明,Matrix Pencil可提供最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号