首页> 外文OA文献 >Fundamental analysis and relative valuation multiples:a determination of value drivers and development of a value model for the US and UK markets
【2h】

Fundamental analysis and relative valuation multiples:a determination of value drivers and development of a value model for the US and UK markets

机译:基本面分析和相对估值倍数:确定价值驱动因素并为美国和英国市场开发价值模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main objective of this study was to develop an algorithmic financial model to determine and examine the characteristics of key value drivers, earnings, net income, EBITDA, sales, and book value, that formulate the value aspects of a company to compute raw value multiples using multi-linear regression analyses of scaled value driver, Price-to-Earnings (PE), Price-to-Net_Income (PX_Earn_Com), Price-to-EBITDA (PEBITDA), Price-to-Sales (PS), and Price-to-Book (PB), against a comprehensive list of independent proxy variables. The resulting spectrum of raw value multiples is utilised in further computation that encompass the triangulation of the spectrum raw value multiples in a weighted process based on the adjusted coefficient of determination measurement, which would synthesise a raw market share price of the company (Adj. Vs_PX) comparable to Bloomberg-based share prices (PX). Effectively, the multi-linear regressive algorithmic financial model would be used for assessing market value signalling a buy or sell based on the position of synthesised market share price relative to current market share prices. The amalgamated data sample for this study comprises of the market indices representing the Anglo-Saxon and European markets, namely the FTSE-All-Share (ASX) of UK, S&P 500 (SPX) of the USA and STOXX Europe 600 (SXXP) of Europe with a data availability ranging from 2001 to 2011 obtained from Bloomberg. The main objective was successfully completed by the analysis of 170 regression models based on 5 scaled dependent variables regressed against 56 independent proxy variables for 8,851 company-years out of 14,340 company-years representing the 3 market indices, ASX, SPX, and SXXP. The descriptive statistics measures of the computed raw value multiples and share prices relative to the Bloomberg-based values have overall generated robust and significant results. Generally reflecting a low standard error, consistent standard deviation and yielding sample means that are very similar. Relating the computed raw value multiples of PE, PX_Earn_Com, PEBITDA, PS, and PB, against the respective Bloomberg-based multiples has mostly shown similar company values for ASX and SPX, signifying that the listed companies are efficiently valued. Whereas for the companies listed on the SXXP index, the results highlighted that there were differences in values observed between the synthesised raw multiples and the Bloomberg-based multiples, implying that companies are either over-valued or under-valued. Overall the corresponding PS and PB multiples displayed the most consistent and explanatorily significant results compared to the three earnings multiples. However, the observed discrepancies in the synthesised values relative to the Bloomberg-based values would mostly be offset collectively between PE, PX_Earn_Com, and PEBITDA, thus presenting consistent and significant results. This study concludes that the cross-sectional relative valuation analysis of any fully-listed company in the Anglo-Saxon and European markets in an identical process to be achievable. Hence, the process of valuation analysis using independent proxy variables can be standardised for the Anglo-Saxon and European markets and the triangulation of value multiples to synthesise comparable market share prices. The various aspects of the methodologies applied are founded on multi-linear regression analysis and relative valuation using a standardised database for all the data obtained from the three market indices: ASX, SPX, and SXXP. Thus, the multi-linear regressive algorithmic financial model is capable of computing cross-sectional valuation, as well as cross-market valuation for any fully-listed company, to compute value multiples that can be triangulated to synthesise respective share prices premised on standardised proxy variables.
机译:这项研究的主要目的是开发一种算法财务模型,以确定和检查关键价值驱动因素,收入,净收入,EBITDA,销售额和账面价值的特征,从而形成公司的价值方面来计算原始价值倍数。使用标度值驱动器,价格对收益(PE),价格对净收入(PX_Earn_Com),价格对EBITDA(PEBITDA),价格对销售(PS)和Price-根据独立代理变量的完整列表进行预订(PB)。由此产生的原始价值倍数频谱在进一步的计算中被利用,该频谱包含基于调整后的确定系数测量值的加权过程中频谱原始价值倍数的三角剖分,这将合成公司的原始市场股价(调整Vs_PX ),相当于彭博社的股价(PX)。有效地,多线性回归算法财务模型将用于基于合成市场股价相对于当前市场股价的位置来评估表示买入或卖出的市场价值。本研究的混合数据样本包括代表盎格鲁-撒克逊人和欧洲市场的市场指数,即英国的FTSE-All-Share(ASX),美国的S&P 500(SPX)和STOXX Europe 600(SXXP)。欧洲的数据可用性从彭博社获得,范围为2001年至2011年。通过对170个回归模型进行分析,成功完成了主要目标,该模型基于代表3个市场指数(ASX,SPX和SXXP)的14,340个公司年中的8,851个公司年的56个独立代理变量与5个独立代理变量进行了回归。计算得出的原始价值倍数和股价相对于基于彭博的价值的描述性统计方法总体上产生了稳健而显着的结果。通常反映出很低的标准误差,一致的标准偏差和产生的样品均值非常相似。将PE,PX_Earn_Com,PEBITDA,PS和PB的计算原始值倍数与各自基于彭博社的倍数相关联,可以看出ASX和SPX的公司价值相似,这表明上市公司得到了有效估值。对于在SXXP指数中列出的公司,结果强调指出,在合成原始倍数和基于彭博社的倍数之间观察到的价值存在差异,这意味着公司要么被高估,要么被低估。总体而言,与三个收益倍数相比,相应的PS和PB倍数显示出最一致且最具解释性的结果。但是,所观察到的相对于基于彭博社的值的综合值的差异将在PE,PX_Earn_Com和PEBITDA之间大体上被共同抵消,因此呈现出一致且显着的结果。这项研究得出的结论是,可以通过相同的过程对盎格鲁-撒克逊人和欧洲市场中任何一家完全上市的公司进行横断面相对估值分析。因此,可以针对盎格鲁撒克逊和欧洲市场以及使用价值倍数的三角剖分来标准化使用独立代理变量进行的估值分析过程,以合成可比较的市场股价。所应用方法的各个方面均基于多线性回归分析和相对标准化(使用标准化数据库),用于从三个市场指数(ASX,SPX和SXXP)获得的所有数据。因此,多线性回归算法财务模型能够为任何一家全面上市的公司计算横截面估值以及跨市场估值,以计算可三角化的价值倍数,从而以标准化代理为基础综合各自的股价变量。

著录项

  • 作者

    Ali Kim Ehab Shelbaya;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号