首页> 外文OA文献 >Bayesian compressive sensing framework for spectrum reconstruction in Rayleigh fading channels
【2h】

Bayesian compressive sensing framework for spectrum reconstruction in Rayleigh fading channels

机译:瑞利衰落信道中频谱重构的贝叶斯压缩感知框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressive sensing (CS) is a novel digital signal processing technique that has found great interest inudmany applications including communication theory and wireless communications. In wireless communications, CSudis particularly suitable for its application in the area of spectrum sensing for cognitive radios, where the completeudspectrum under observation, with many spectral holes, can be modeled as a sparse wide-band signal in the frequencyuddomain. Considering the initial works performed to exploit the benefits of Bayesian CS in spectrum sensing, the fadingudcharacteristic of wireless communications has not been considered yet to a great extent, although it is an inherent featureudfor all sorts of wireless communications and it must be considered for the design of any practically viable wireless system.udIn this paper, we extend the Bayesian CS framework for the recovery of a sparse signal, whose nonzero coefficients followuda Rayleigh distribution. It is then demonstrated via simulations that mean square error significantly improves whenudappropriate prior distribution is used for the faded signal coefficients and thus, in turns, the spectrum reconstructionudimproves. Different parameters of the system model, e.g., sparsity level and number of measurements, are then variedudto show the consistency of the results for different cases.
机译:压缩感测(CS)是一种新颖的数字信号处理技术,已在包括通信理论和无线通信在内的众多应用中引起了极大的兴趣。在无线通信中,CS udis特别适用于认知无线电频谱感测领域,在该领域中,可以将正在观察的完整频谱(具有许多频谱孔)建模为频率 uddomain中的稀疏宽带信号。 。考虑到为了利用贝叶斯CS在频谱感测中的优势而进行的初步工作,尽管它是所有无线通信的固有特征 ud,但仍未在很大程度上考虑无线通信的衰落 ud特征。 ud在本文中,我们扩展了贝叶斯CS框架以恢复稀疏信号,该信号的非零系数遵循 uda Rayleigh分布。然后通过仿真证明,当适当的先验分布用于衰落的信号系数时,均方误差会显着改善,因此,频谱重构也将得到改善。然后改变系统模型的不同参数,例如稀疏度和测量次数,以显示不同情况下结果的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号