首页> 外文OA文献 >Evaluation of the Memory Communication Traffic in a Hierarchical Cache Model for Massively-Manycore Processors
【2h】

Evaluation of the Memory Communication Traffic in a Hierarchical Cache Model for Massively-Manycore Processors

机译:大规模manycore处理器的层次缓存模型中的内存通信流量评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The scaling of semiconductor technologies is leading to processors with increasing numbers of cores. A key enabler in manycore systems is the use of Networks-on-Chip (NoC) as a global communication mechanism. The adoption of NoCs in manycore systems requires a shift in focus from computation to communication, as communication is fast becoming the dominant factor in processor performance. Many researchers have focused on direct communication between cores in the NoC, however in a manycore processor the communication is actually between the cores and the memory hierarchy. In this work, we investigate the memory communication traffic of shared threads in a hierarchical cache architecture. We argue that the performance scalability for shared-memory applications in a hierarchical cache architecture for systems with thousands of processor cores depends on the distance between threads sharing memory in terms of the cache hierarchy (the "memory distance"). We present latency and throughput results comparing fat quadtree, concentrated mesh and mesh topologies as a function of the "memory distance" between the threads. Our results using the ITRS physical data for 2023 show that the model of thread placement and the distance of placing them significantly affects the NoC performance, and that scale-invariant topologies perform better than flat topologies.
机译:半导体技术的扩展正导致处理器具有越来越多的内核。许多核心系统中的关键推动力是使用片上网络(NoC)作为全局通信机制。由于通信迅速成为处理器性能的主要因素,因此在许多核心系统中采用NoC要求将重点从计算转移到通信。许多研究人员专注于NoC内核之间的直接通信,但是在manycore处理器中,通信实际上是内核和内存层次结构之间的通信。在这项工作中,我们研究了分层缓存体系结构中共享线程的内存通信流量。我们认为,在具有数千个处理器核心的系统的分层缓存体系结构中,共享内存应用程序的性能可伸缩性取决于共享内存的线程之间的距离(根据缓存层次结构)(“内存距离”)。我们提供了比较胖四叉树,集中网格和网格拓扑作为线程之间“内存距离”函数的延迟和吞吐量结果。我们使用2023年ITRS物理数据得出的结果表明,线程放置的模型和放置它们的距离会显着影响NoC性能,并且尺度不变的拓扑比平面拓扑的性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号