首页> 外文OA文献 >An algorithm for optimal transport between a simplex soup and a point cloud
【2h】

An algorithm for optimal transport between a simplex soup and a point cloud

机译:单纯形和点云之间最优传输的算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a numerical method to find the optimal transport map between a measure supported on a lower-dimensional subset of R^d and a finitely supported measure. More precisely, the source measure is assumed to be supported on a simplex soup, i.e. on a union of simplices of arbitrary dimension between 2 and d. As in [Aurenhammer, Hoffman, Aronov, Algorithmica 20 (1), 1998, 61–76] we recast this optimal transport problem as the resolution of a non-linear system where one wants to prescribe the quantity of mass in each cell of the so-called Laguerre diagram. We prove the convergence with linear speed of a damped Newton's algorithm to solve this non-linear system. The convergence relies on two conditions: (i) a genericity condition on the point cloud with respect to the simplex soup and (ii) a (strong) connectedness condition on the support of the source measure defined on the simplex soup. Finally, we apply our algorithm in R^3 to compute optimal transport plans between a measure supported on a triangulation and a discrete measure. We also detail some applications such as optimal quantization of a probability density over a surface, remeshing or rigid point set registration on a mesh.
机译:我们提出了一种数值方法来找到在R ^ d的低维子集上支持的度量与有限支持的度量之间的最佳传输图。更精确地,假设源度量支持在单纯形汤上,即在2和d之间的任意维的单纯形的并集上得到支持。就像在[Aurenhammer,Hoffman,Aronov,Algorithmica 20(1),1998,61–76]中一样,我们将这种最优输运问题重塑为一个非线性系统的分辨率,在该系统中,我们要规定质量每个单元的质量。所谓的拉盖尔图。我们证明了阻尼牛顿算法的线性速度收敛性,可以解决该非线性系统。收敛依赖于两个条件:(i)关于单纯形汤的点云上的一般性条件,以及(ii)在单纯形汤上定义的源度量的支持下的(强)连通性条件。最后,我们在R ^ 3中应用我们的算法来计算三角测量支持的度量和离散度量之间的最佳运输计划。我们还详细介绍了一些应用程序,例如表面上概率密度的最佳量化,网格上的重新网格化或刚性点集配准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号