首页> 外文OA文献 >Wideband vibration energy harvesting using electromagnetic transduction for powering internet of things
【2h】

Wideband vibration energy harvesting using electromagnetic transduction for powering internet of things

机译:使用电磁换能为物联网供电的宽带振动能量收集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ‘Internet of Things-(IoT)’ envisions a world scattered with physical sensors that collect and transmit data about almost anything and thereby enabling intelligent decision-making for a smart environment. While technological advancements have reduced the power consumption of such devices significantly, the problem of perpetual energy supply beyond the limited capability of batteries is a bottleneck to this vision which is yet to be resolved. This issue has surged the research to investigate the prospect of harvesting the energy out of ambient mechanical vibrations. However, limited applications of conventional resonant devices under most practical environments involving frequency varying inputs, has gushed the research on wideband transducers recently. To facilitate multi-frequency operation at low-frequency regime, design innovations of the Silicon-onInsulator based MEMS suspension systems are performed through multi-modal activation. For continuous bandwidth widening, the benefits of using nonlinear stiffness in the system dynamics are investigated. By topologically varying the spring architectures, dramatically improved operational bandwidth with large power-density is obtained, which is benchmarked using a novel figure-of-merit. However, the fundamental phenomenon of multi-stability limits many nonlinear oscillator based applications including energy harvesting. To address this, an electrical control mechanism is introduced which dramatically improves the energy conversion efficiency over a wide bandwidth in a frequencyamplitude varying environment using only a small energy budget. The underlying effects are independent of the device-scale and the transduction methods, and are explained using a modified Duffing oscillator model. One of the key requirements for fully integrated electromagnetic transducers is the CMOS compatible batch-fabrication of permanent magnets with large energy-product. In the final module of the works, nano-structured CoPtP hard-magnetic material with large coercivity is developed at room-temperature using a current modulated electro-deposition technique. The demagnetization fields of the magnetic structures are minimized through optimized micro-patterns which enable the full integration of high performance electromagnetic energy harvesters.
机译:“物联网(IoT)”设想了一个分散着物理传感器的世界,这些物理传感器收集和传输几乎所有东西的数据,从而实现智能环境的智能决策。尽管技术进步已大大降低了此类设备的功耗,但永久的能量供应问题已超出了电池的有限容量,这是尚未解决的这一愿景的瓶颈。这个问题激起了研究人员的兴趣,以研究从环境机械振动中收集能量的前景。然而,在大多数实际环境中,在涉及频率变化输入的情况下,常规谐振装置的有限应用限制了对宽带换能器的研究。为了促进在低频状态下的多频操作,基于硅绝缘子的MEMS悬挂系统的设计创新是通过多模式激活进行的。对于连续的带宽扩展,研究了在系统动力学中使用非线性刚度的好处。通过对弹簧架构进行拓扑变化,可以显着提高工作带宽和大功率密度,这是使用新颖的品质因数进行基准测试的。但是,多稳定性的基本现象限制了许多基于非线性振荡器的应用,包括能量收集。为了解决这个问题,引入了一种电控制机制,该电控制机制在仅使用很小的能量预算的情况下,在频率变化幅度较大的环境中,可以在很大的带宽内显着提高能量转换效率。潜在的影响与器件规模和转导方法无关,并使用改进的Duffing振荡器模型进行了解释。完全集成的电磁换能器的关键要求之一是与CMOS兼容的批量制造具有大能量积的永磁体。在工作的最后一个模块中,使用电流调制电沉积技术在室温下开发了具有大矫顽力的纳米结构CoPtP硬磁材料。磁性结构的退磁场通过优化的微模式得以最小化,这些微模式可实现高性能电磁能量采集器的完全集成。

著录项

  • 作者

    Mallick Dhiman;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号