首页> 外文OA文献 >High speed nonlinear optical components for next-generation optical communications
【2h】

High speed nonlinear optical components for next-generation optical communications

机译:用于下一代光通信的高速非线性光学组件

摘要

Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pressure on existing core router infrastructure. To implement optical signal processing functionalities, it is necessary to exploit the nonlinear optical properties of suitable materials such as III-V semiconductor compounds, silicon, periodically-poled lithium niobate (PPLN), highly nonlinear fibre (HNLF) or chalcogenide glasses. However, nonlinear optical (NLO) components such as semiconductor optical amplifiers (SOAs), electroabsorption modulators (EAMs) and silicon nanowires are the most promising candidates as all-optical switching elements vis-à-vis ease of integration, device footprint and energy consumption. This PhD thesis presents the amplitude and phase dynamics in a range of device configurations containing SOAs, EAMs and/or silicon nanowires to support the design of all optical switching elements for deployment in next-generation optical networks. Time-resolved pump-probe spectroscopy using pulses with a pulse width of 3ps from mode-locked laser sources was utilized to accurately measure the carrier dynamics in the device(s) under test. The research work into four main topics: (a) a long SOA, (b) the concatenated SOA-EAMSOA (CSES) configuration, (c) silicon nanowires embedded in SU8 polymer and (d) a custom epitaxy design EAM with fast carrier sweepout dynamics. The principal aim was to identify the optimum operation conditions for each of these NLO device configurations to enhance their switching capability and to assess their potential for various optical signal processing functionalities. All of the NLO device configurations investigated in this thesis are compact and suitable for monolithic and/or hybrid integration.
机译:当前在核心互联网路由器上使用的电子信号处理系统需要大量的电源才能运行,并且它们可能无法继续满足消费者对更多带宽的需求,而不会过度增加成本,尺寸和/或能耗。可以在下一代光网络中部署光信号处理技术,以完成诸如波长转换,多路分解和高速(≥100Gb.s-1)格式转换之类的简单任务,以减轻现有核心路由器基础架构的压力。为了实现光信号处理功能,必须利用合适材料的非线性光学特性,例如III-V半导体化合物,硅,周期性极化的铌酸锂(PPLN),高度非线性纤维(HNLF)或硫族化物玻璃。然而,由于全光开关元件相对于易于集成,器件占位和能耗而言,非线性光(NLO)组件(例如半导体光放大器(SOA),电吸收调制器(EAM)和硅纳米线)是最有前途的候选产品。本博士论文介绍了包含SOA,EAM和/或硅纳米线的一系列器件配置中的幅度和相位动态特性,以支持用于下一代光网络中部署的所有光交换元件的设计。利用时间分辨泵浦光谱法,使用来自锁模激光源的脉冲宽度为3ps的脉冲来精确测量被测设备中的载流子动力学。研究工作分为四个主要主题:(a)长SOA,(b)级联的SOA-EAMSOA(CSES)配置,(c)嵌入SU8聚合物中的硅纳米线和(d)具有快速载流子清除的定制外延设计EAM动力学。主要目的是为每种NLO设备配置确定最佳工作条件,以增强其切换能力并评估其在各种光信号处理功能方面的潜力。本文研究的所有NLO器件配置都是紧凑的,适合于单片和/或混合集成。

著录项

  • 作者

    Cleary Ciaran Sean;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号