首页> 外文OA文献 >Organic functionalisation, doping and characterisation of semiconductor surfaces for future CMOS device applications
【2h】

Organic functionalisation, doping and characterisation of semiconductor surfaces for future CMOS device applications

机译:半导体表面的有机功能化,掺杂和特性表征,可用于未来的CMOS器件应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Organic Functionalisation, Doping and Characterisation of Semiconductor Surfaces for Future CMOS Device Applications Semiconductor materials have long been the driving force for the advancement of technology since their inception in the mid-20th century. Traditionally, micro-electronic devices based upon these materials have scaled down in size and doubled in transistor density in accordance with the well-known Moore’s law, enabling consumer products with outstanding computational power at lower costs and with smaller footprints. According to the International Technology Roadmap for Semiconductors (ITRS), the scaling of metal-oxide-semiconductor field-effect transistors (MOSFETs) is proceeding at a rapid pace and will reach sub-10 nm dimensions in the coming years. This scaling presents many challenges, not only in terms of metrology but also in terms of the material preparation especially with respect to doping, leading to the moniker “More-than-Moore”. Current transistor technologies are based on the use of semiconductor junctions formed by the introduction of dopant atoms into the material using various methodologies and at device sizes below 10 nm, high concentration gradients become a necessity. Doping, the controlled and purposeful addition of impurities to a semiconductor, is one of the most important steps in the material preparation with uniform and confined doping to form ultra-shallow junctions at source and drain extension regions being one of the key enablers for the continued scaling of devices. Monolayer doping has shown promise to satisfy the need to conformally dope at such small feature sizes. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from the traditional silicon and germanium devices to emerging replacement materials such as III-V compounds This thesis aims to investigate the potential of monolayer doping to complement or replace conventional doping technologies currently in use in CMOS fabrication facilities across the world.
机译:自20世纪中叶问世以来,半导体材料一直是技术进步的驱动力,长期以来一直是推动技术进步的驱动力。传统上,基于这些材料的微电子设备已经按照众所周知的摩尔定律缩小了尺寸,并使晶体管的密度增加了一倍,从而使消费类产品能够以较低的成本和较小的占地面积获得出色的计算能力。根据国际半导体技术路线图(ITRS),金属氧化物半导体场效应晶体管(MOSFET)的规模正在迅速发展,并且在未来几年内将达到10nm以下的尺寸。这种缩放不仅在计量方面而且在材料准备方面(尤其是在掺杂方面)都带来了许多挑战,从而导致了“莫名其妙”的绰号。当前的晶体管技术基于通过使用各种方法将掺杂剂原子引入材料中而形成的半导体结的使用,并且在小于10 nm的器件尺寸下,高浓度梯度成为必要。掺杂是向半导体中有目的地有目的地添加杂质的掺杂,这是材料制备过程中最重要的步骤之一,采用均匀,受限的掺杂以在源极和漏极扩展区形成超浅结,这是持续进行掺杂的关键因素之一。设备缩放。单层掺杂已显示出可以满足以如此小的特征尺寸共形掺杂的需求。研究表明,单层掺杂(MLD)可以满足在从传统的硅和锗器件到新兴的替代材料(例如III-V化合物)等多种材料上扩展无缺陷,保形和可控掺杂的要求。单层掺杂技术的发展,以补充或替代目前在全球CMOS制造设施中使用的常规掺杂技术。

著录项

  • 作者

    OConnell John Joseph;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号