首页> 外文OA文献 >An Alternative Approach to Visualizing Stock Market Correlation Matrices- An Empirical study of forming portfolios that contain only small numbers of stocks using both existing and newly discovered visualization methods
【2h】

An Alternative Approach to Visualizing Stock Market Correlation Matrices- An Empirical study of forming portfolios that contain only small numbers of stocks using both existing and newly discovered visualization methods

机译:可视化股票市场相关矩阵的另一种方法-使用现有和新发现的可视化方法形成仅包含少量股票的投资组合的实证研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The core of stock portfolio diversification is to pick stocks from different correlation clusters when forming portfolios. The result is that the chosen stocks will be only weakly correlated with each other. However, since correlation matrices are high dimensional, it is close to impossible to determine correlation clusters by simply looking at a correlation matrix. It is therefore common to regard industry groups as correlation clusters. In this thesis, we used three visualization methods namely Hierarchical Cluster Trees, Minimum Spanning Trees and neighbor-Net splits graphs to “collapse” correlation matrices’ high dimensional structures onto two-dimensional planes, and then assign stocks into different clusters to create the correlation clusters. We then simulated sets of portfolios where each set contains 1000 portfolios, and stocks in each of the portfolio were picked from the correlation clusters suggested by each of the three visualization methods and industry groups (another way of determine correlation clusters). The mean and variance distribution of each set of 1000 simulated portfolios gives us an indication of how well those clusters were determined.The examinations were conducted on two sets of financial data. The first one is the 30 stocks in the Dow Jones Industrial average which contains relatively small number of stocks and the second one is the ASX 200 which contains relatively larger number of stocks. We found none of the methods studied consistently defined correlation clusters more efficiently than others in out-of-sample testing.The thesis does contribute the finance literature in two ways. Firstly, it introduces the neighbor-Net method as an alternative way to visualize financial data’s underlying structures. Secondly, it used a novel “visualization
机译:股票投资组合多元化的核心是在形成投资组合时从不同的相关性集群中挑选股票。结果是所选股票之间的相关性很弱。但是,由于相关矩阵是高维的,因此仅通过查看相关矩阵来确定相关聚类几乎是不可能的。因此,通常将行业组视为关联集群。在本文中,我们使用了层次化聚类树,最小生成树和近邻网分裂图三种可视化方法,将相关矩阵的高维结构“折叠”到二维平面上,然后将股票分配到不同的聚类中以创建相关性集群。然后,我们模拟了投资组合集,其中每组包含1000个投资组合,并且从三种可视化方法和行业组(确定关联簇的另一种方法)建议的关联簇中选择了每个投资组合中的股票。每组1000个模拟投资组合的均值和方差分布向我们表明了如何确定这些聚类。对两组财务数据进行了检验。第一个股票是道琼斯工业平均指数中的30只股票,其中股票数量相对较少;第二个股票是ASX 200,其中股票数量相对较多。我们发现,在样本外测试中,没有一种方法能比其他方法更有效地一致地定义相关性聚类。本文的确为金融文献提供了两种方法。首先,它引入了邻居网方法,作为可视化财务数据基础结构的替代方法。其次,它使用了新颖的“可视化

著录项

  • 作者

    Zhan Cheng Juan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号