As water resources are limited and the demand for agricultural products increases, it becomesincreasingly important to use irrigation water optimally. At a farm scale, farmer’s have a particularlystrong incentive to optimize their irrigation water use when the volume of water available over a seasonis production limiting. In this situation, a farmer’s goal is to maximize farm profit, by adjusting when andwhere irrigation water is used. However, making the very best decisions about when and where toirrigate is not easy, since these daily decisions require consideration of the entire remaining irrigationseason. Future rainfall uncertainty further complicates decisions on when and which crops should besubjected to water stress. This paper presents an innovative on-farm irrigation scheduling decisionsupport method called the Canterbury irrigation scheduler (CIS) that is suitable when seasonal wateravailability is limited. Previous optimal scheduling methods generally use stochastic dynamicprogramming, which requires over-simplistic plant models, limiting their practical usefulness. TheCIS method improves on previous methods because it accommodates realistic plant models. Future farmprofit (the objective function) is calculated using a time-series simulation model of the farm. Differentirrigation management strategies are tested using the farm simulation model. The irrigation strategiesare defined by a set of decision variables, and the decision variables are optimized using simulatedannealing. The result of this optimization is an irrigation strategy that maximizes the expected futurefarm profit. This process is repeated several times during the irrigation season using the CIS method, andthe optimal irrigation strategy is modified and improved using updated climate and soil moistureinformation. The ability of the CIS method to produce near optimal decisions was demonstrated by acomparison to previous stochastic dynamic programming schedulers. A second case study shows the CISmethod can incorporate more realistic farm models than is possible when using stochastic dynamicprogramming. This case study used the FarmWi$e/APSIM model developed by CSIRO, Australia. Resultsshow that when seasonal water limit is the primary constraint on water availability, the CIS couldincrease pasture yield revenue in Canterbury (New Zealand) in the order of 10%, compared withscheduling irrigation using current state of the art scheduling practice.
展开▼
机译:由于水资源有限,对农产品的需求增加,因此最佳利用灌溉水变得越来越重要。在农场规模上,当一个季节的可用水量受到生产限制时,农民有特别强烈的动机来优化灌溉用水。在这种情况下,农民的目标是通过调整灌溉用水的时间和地点来最大化农场的利润。但是,就何时何地进行灌溉做出最好的决定并不容易,因为这些日常决策需要考虑整个剩余的灌溉季节。未来降雨的不确定性进一步加剧了何时以及哪些农作物应承受水分胁迫的决定。本文提出了一种创新的农田灌溉调度决策支持方法,称为Canterbury灌溉调度器(CIS),该方法适用于季节性用水量有限的情况。先前的最佳调度方法通常使用随机动态编程,这需要过于简单的工厂模型,从而限制了其实用性。 CIS方法对以前的方法进行了改进,因为它可以适应实际的工厂模型。使用农场的时间序列仿真模型计算未来的农场利润(目标函数)。使用农场模拟模型测试了不同灌溉管理策略。灌溉策略由一组决策变量定义,并使用模拟退火对决策变量进行优化。优化的结果是一种灌溉策略,可最大化预期的未来农场利润。在灌溉季节使用CIS方法重复此过程几次,并使用更新的气候和土壤湿度信息修改和改善最佳灌溉策略。与以前的随机动态编程调度程序相比,证明了CIS方法产生接近最佳决策的能力。第二个案例研究表明,与使用随机动态编程时相比,CIS方法可以包含更多逼真的农场模型。本案例研究使用了澳大利亚CSIRO开发的FarmWi $ e / APSIM模型。结果表明,当季节性用水限制是水供应的主要限制因素时,与使用当前最先进的调度技术进行灌溉计划相比,独联体可以将Canterbury(新西兰)的牧草产量收入提高10%左右。
展开▼