首页> 外文OA文献 >Systems for the automated 3D assembly of micro-tissue and bio-printing of tissue engineered constructs
【2h】

Systems for the automated 3D assembly of micro-tissue and bio-printing of tissue engineered constructs

机译:微型3D自动化组织组装和组织工程构建体生物打印的系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tissue engineering is a field devoted to the design and creation of replacementtissues with the ultimate goal of one day providing replacement organs. Traditionalstrategies to accomplish this through the bulk seeding of cells onto a singlemonolithic porous bio-scaffold are unable to realise a precise architecture, thusthe inability to mimic the cells natural micro-environment found within the body.Bio-printing approaches are the current state of the art with the ability toaccurately mimic the complex 3D hierarchical structure of tissue. However, afunctional construct also requires high strength to provide adequate support inload bearing applications such as bone and cartilage tissue engineering, and tomaintain the open geometry of a large intricate channel network, which is crucialfor the transport of nutrients and wastes. Typical approaches utilise materialswhich have processing parameters more amendable for cell incorporation, thusthey can be simultaneously deposited with scaffolding material. However, theresulting construct is typically of low strength.This thesis explores the automation of a printing and “tissue assembly” processwith the ability to incorporate delicate cell aggregates or spheroids within a highstrength bio-scaffold requiring harsh processing parameters, at precise locations.The 3D printed bio-scaffold has a lattice architecture which enables a frictional fitto be formed between the particle and scaffold, thus preventing egress. To achievethis the pore must be expanded before the delivery of a single 1mm particle.Novel subsystems were developed to automate this process and provide the abilityto achieve scalable, flexible, complex constructs with accurate architecture.A system architecture employing the benefits of modularity was devised. Themain subsystems developed were the singulation device, to ensure the separationof a single particle; the injection device, to deliver and seed particles into thescaffold, and the control system, to facilitate the operation of the devices.Three generations of singulation devices have been developed ranging frommechanical to fluid manipulation methods alone. The first prototype utilisedmechanical methods, with simple control methods. However the inability tocorrectly position the lead particle within the singulation chamber, resulted indamage to the test alginate particles. In the second prototype a fully fluidics baseddevice utilised two trapping sites to capture the leading particles. Singulationsuccess rates of up to 88% was achieved. Higher rates were limited by the trappedparticle’s interaction with the lagging particles during capture. In a similarconcept to the second prototype, the third prototype utilised only a single trappedparticle, and achieved much higher throughput, and 100% singulation accuracy.The injection device, utilised a conical expanding rod within a thin outersheath. It was able to expand the pore, with minimal damage to the scaffold,providing an unobstructed path for the delivery of the particle into the pore.A decentralised control system was devised to integrate the process operationfor the electro-mechanical devices. Separate microcontrollers were able to sense,interact and communicate with one another, and the master control PC, to executespecific tasks to automate the process.The development of systems to automate the process has addressed theability to accurately incorporate delicate cells with a high strength bio-scaffold,and will enable the realisation and investigation of intricate complex constructs,unachievable with current manual processes. Thus features found within thebody may be more closely mimicked and functionalised, which may provide thenecessary signals, micro-environment and infrastructure to correctly regulate theformation of complex functional tissue, supported by the adequate mass transportof nutrients and wastes. This may one day lead to 3D printing or assembly ofviable replacement tissue, accurate in vitro model systems for laboratory testing,or even whole organs.
机译:组织工程学是致力于替换组织的设计和创建的领域,其最终目标是一天提供替换器官。通过将细胞大量接种到单个整体多孔生物支架上来实现此目的的传统策略无法实现精确的架构,因此无法模仿体内发现的自然微环境的细胞。具有精确模拟组织的复杂3D层次结构的能力的技术。然而,功能性构造还需要高强度,以在承重应用(例如骨骼和软骨组织工程)中提供足够的支撑,并保持大型复杂通道网络的开放几何形状,这对于营养物质和废物的运输​​至关重要。典型的方法利用具有更适于细胞掺入的加工参数的材料,因此它们可以与支架材料同时沉积。但是,结果构造通常强度很低。本论文探索了印刷和“组织组装”过程的自动化,该过程具有将精密的细胞聚集体或球体结合到需要苛刻的加工参数的高强度生物支架中的精确位置。印刷的生物支架具有晶格结构,该构架使得能够在颗粒和支架之间形成摩擦配合,从而防止流出。为了达到这个目的,必须在递送单个1mm颗粒之前将孔扩展。开发了新颖的子系统以实现该过程的自动化,并提供了具有精确体系结构的可扩展,灵活,复杂结构的能力。设计了一种利用模块化优势的系统体系结构。开发的主要子系统是分离装置,以确保单个颗粒的分离。注射装置用于将颗粒输送到种子中,并向其注入种子,控制系统则用于便利该装置的操作。已经开发了三代分离装置,从机械方法到流体处理方法。第一个原型采用机械方法,具有简单的控制方法。然而,无法将铅颗粒正确地定位在分离腔室内,导致对测试藻酸盐颗粒的损坏。在第二个原型中,一个完全基于流体技术的设备利用了两个捕获位点来捕获前导颗粒。分离成功率高达88%。捕获过程中被捕获的粒子与滞后粒子的相互作用限制了更高的速率。在与第二个原型相似的概念中,第三个原型仅使用单个捕获的粒子,并实现了更高的通量和100%的分割精度。注射装置在较薄的外鞘内使用了锥形膨胀杆。它能够扩张孔洞,对支架的损害最小,为将颗粒输送到孔道提供了畅通无阻的路径。设计了一种分散式控制系统,以集成机电设备的工艺操作。独立的微控制器与主控制PC能够相互感应,交互和通信,以执行特定任务以使过程自动化。开发使过程自动化的系统已解决了将精密单元与高强度生物电池准确结合的能力。脚手架,将能够实现和研究复杂的复杂结构,而这是当前手动过程无法实现的。因此,在体内发现的特征可以被更紧密地模仿和功能化,这可以提供必要的信号,微环境和基础设施,以正确地调节复杂功能组织的形成,并由营养物和废物的充分质量传递来支持。有一天,这可能会导致3D打印或可行的替代组织的组装,用于实验室测试的精确体外模型系统,甚至是整个器官。

著录项

  • 作者

    Lang Michael;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号