首页> 外文OA文献 >Building trees, hunting for trees, and comparing trees : theory and methods in phylogenetic analysis
【2h】

Building trees, hunting for trees, and comparing trees : theory and methods in phylogenetic analysis

机译:造树,寻树木和比较树木:系统发育分析的理论和方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phylogenetics is the study and identification of evolutionary patterns and structures in nature; this thesis explores the mathematics of these structures. The basic objects of study are the leaf labelled tree and its substructures: quartets, splits, clusters and rooted triples, among others. We present fundamental theorems and characterisations, as well as efficient algorithms for a range of phylogenetic problems. It is often possible to deduce phylogenetic information not in the original data. We characterise an intriguing system of inference 'rules' that arise in this way, and prove that there exist rules of every order that cannot be reduced to lower order rules. We describe a polynomial time algorithm that extracts maximum weight bounded degree trees from a given binary character set. The algorithm enables compatibility analysis of large data sets, in this case the daunting "Out of Africa" human mtDNA sequences. Other applications include consensus, quartet puzzling and split decomposition. We accelerate the Minimum Evolution method with an optimal O(n²) time algorithm for calculating OLS edge lengths and fast algorithms for WLS and GLS edge lengths. We show how a Minimum Evolution tree can be efficiently extracted from a collection of splits. Consensus methods are surveyed, characterised and classified. A new intuitive consensus method for edge weighted trees is introduced, together with an efficient algorithm for constructing it. We present an algorithm for the Maximum Agreement Subtree problem that is based on rooted triples and is much simpler than existing algorithms. We also provide algorithms for obtaining agreement subtrees with the largest number of edges, rooted triples or quartets. Issues of complexity are discussed throughout the thesis, with several new NP-completeness results and a list of standard NP-complete phylogenetic problems.
机译:系统发育学是研究和鉴定自然界中的进化模式和结构的方法。本文探讨了这些结构的数学原理。研究的基本对象是标有叶子的树及其子结构:四重奏,分裂,簇和有根的三元组等。我们提出了基本的定理和特征,以及针对一系列系统发育问题的有效算法。通常有可能不在原始数据中推断出系统发育信息。我们描述了以这种方式出现的一个有趣的推理“规则”系统,并证明存在着不能降阶为低阶规则的每个阶的规则。我们描述了一种多项式时间算法,该算法从给定的二进制字符集中提取最大权重有界度树。该算法可以对大型数据集进行兼容性分析,在这种情况下,这是令人生畏的“非洲以外”人类mtDNA序列。其他应用程序包括共识,四重解谜和拆分分解。我们使用用于计算OLS边缘长度的最佳O(n²)时间算法和用于WLS和GLS边缘长度的快速算法来加速最小演化方法。我们展示了如何从拆分集合中有效提取最小演化树。对共识方法进行了调查,表征和分类。介绍了一种新的边缘加权树的直观共识方法,以及一种有效的构造方法。我们提出了一个基于最大三元组的最大协议子树问题算法,它比现有算法简单得多。我们还提供了用于获取具有最大数量的边,生根三重奏或四重奏的协议子树的算法。整个论文中都讨论了复杂性问题,并提出了一些新的NP完全性结果以及一系列标准的NP完全系统发育问题。

著录项

  • 作者

    Bryant David;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号