首页> 外文OA文献 >Development of Modelling Techniques for Pulsed Pressure Chemical Vapour Deposition (PP-CVD)
【2h】

Development of Modelling Techniques for Pulsed Pressure Chemical Vapour Deposition (PP-CVD)

机译:脉冲化学气相沉积(PP-CVD)建模技术的发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, a numerical and theoretical investigation of the Pulsed Pressure ChemicalVapour Deposition (PP-CVD) progress is presented. This process is a novel method for thedeposition of thin films of materials from either liquid or gaseous precursors. PP-CVDoperates in an unsteady manner whereby timed pulsed of the precursor are injected into acontinuously evacuated reactor volume.A non-dimensional parameter indicating the extent of continuum breakdown under strongtemporal gradients is developed. Experimental measurements, supplemented by basiccontinuum simulations, reveal that spatio-temporal breakdown of the continuum conditionoccurs within the reactor volume. This means that the use of continuum equation basedsolvers for modelling the flow field is inappropriate. In this thesis, appropriate methods aredeveloped for modelling unsteady non-continuum flows, centred on the particle-based DirectSimulation Monte Carlo (DSMC) method.As a first step, a basic particle tracking method and single processor DSMC code are used toinvestigate the physical mechanisms for the high precursor conversion efficiency anddeposition uniformity observed in experimental reactors. This investigation reveals that atsoon after the completion of the PP-CVD injection phase, the precursor particles have anapproximately uniform distribution within the reactor volume. The particles then simplydiffuse to the substrate during the pump-down phase, during which the rate of diffusiongreatly exceeds the rate at which particles can be removed from the reactor. Higher precursorconversion efficiency was found to correlate with smaller size carrier gas molecules andmoderate reactor peak pressure.An unsteady sampling routine for a general parallel DSMC method called PDSC, allowing thesimulation of time-dependent flow problems in the near continuum range, is then developedin detail. Nearest neighbour collision routines are also implemented and verified for this code.A post-processing procedure called DSMC Rapid Ensemble Averaging Method (DREAM) isdeveloped to improve the statistical scatter in the results while minimising both memory andsimulation time. This method builds an ensemble average of repeated runs over small numberof sampling intervals prior to the sampling point of interest by restarting the flow using eitherxia Maxwellian distribution based on macroscopic properties for near equilibrium flows(DREAM-I) or output instantaneous particle data obtained by the original unsteady samplingof PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated bysimulating shock tube flow and the development of simple Couette flow. Unsteady PDSC isfound to accurately predict the flow field in both cases with significantly reduced run-timesover single processor code and DREAM greatly reduces the statistical scatter in the resultswhile maintaining accurate particle velocity distributions. Verification simulations areconducted involving the interaction of shocks over wedges and a benchmark study againstother DSMC code is conducted.The unsteady PDSC routines are then used to simulate the PP-CVD injection phase. Thesesimulations reveal the complex flow phenomena present during this stage. The initialexpansion is highly unsteady; however a quasi-steady jet structure forms within the reactorafter this initial stage. The simulations give additional evidence that the collapse of the jet atthe end of the injection phase results in an approximately uniform distribution of precursorthroughout the reactor volume.Advanced modelling methods and the future work required for development of the PP-CVDmethod are then proposed. These methods will allow all configurations of reactor to bemodelled while reducing the computational expense of the simulations.
机译:本文对脉冲压力化学气相沉积(PP-CVD)的进展进行了数值和理论研究。该方法是从液体或气体前体沉积材料薄膜的新颖方法。 PP-CVD以不稳定的方式运行,从而将定时脉冲的前驱物注入到连续抽空的反应器容积中。开发了一个无量纲参数,该参数指示了在强时梯度下连续介质击穿的程度。通过基本连续谱模拟的补充,实验测量表明,连续谱条件的时空分解发生在反应堆容积内。这意味着使用基于连续方程的求解器对流场建模是不合适的。本文以基于粒子的DirectSimulation蒙特卡洛(DSMC)方法为中心,开发了用于对非连续非连续流建模的适当方法。第一步,使用基本的粒子跟踪方法和单处理器DSMC代码研究物理机制在实验反应器中观察到高的前驱体转化效率和沉积均匀性。该研究表明,在PP-CVD注入阶段完成后不久,前驱体颗粒在反应器体积内具有大约均匀的分布。然后,在抽空阶段,颗粒简单地扩散到基底上,在此期间扩散速率大大超过了可以从反应器中去除颗粒的速率。发现较高的前体转化效率与较小的载气分子和适中的反应堆峰值压力有关。然后详细开发了一种通用的平行DSMC方法PDSC的不稳定采样程序,该方法可以在近连续范围内模拟与时间有关的流动问题。此代码还实现并验证了最近的邻居碰撞例程。开发了一种称为DSMC快速集成平均方法(DREAM)的后处理程序,以提高结果的统计分散性,同时最大程度地减少内存和仿真时间。该方法通过使用基于近似平衡流的宏观特性的麦克斯韦(Maxwellian)分布重新开始流动或输出由瞬时获得的瞬时粒子数据,从而在感兴趣的采样点之前的少量采样间隔内建立重复运行的总体平均值。 PDSC针对非平衡流(DREAM-II)的原始非稳态采样。通过模拟激波管流动和简单库埃特流动的发展验证了该方法。发现非稳态PDSC可以在两种情况下准确地预测流场,并且大大减少了运行时间,只需使用单个处理器代码,而DREAM可以大大减少结果中的统计分散,同时保持准确的粒子速度分布。进行了涉及楔块上的冲击相互作用的验证模拟,并针对其他DSMC代码进行了基准研究,然后将非稳定PDSC例程用于模拟PP-CVD注入阶段。这些模拟揭示了此阶段存在的复杂流动现象。初始扩展非常不稳定;但是,在此初始阶段之后,在反应器内会形成准稳定的射流结构。模拟提供了额外的证据,表明在注入阶段结束时射流的塌陷导致整个反应器体积中前体的分布大致均匀,然后提出了先进的建模方法以及开发PP-CVD方法所需的未来工作。这些方法将允许对反应堆的所有配置进行建模,同时减少模拟的计算费用。

著录项

  • 作者

    Cave Hadley Mervyn;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号