首页> 外文OA文献 >Exploiting System Diversity in Peer-to-Peer Publish-Subscribe Systems
【2h】

Exploiting System Diversity in Peer-to-Peer Publish-Subscribe Systems

机译:利用对等发布 - 订阅系统中的系统多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents new techniques that exploit system diversity within aparticular class of peer-to-peer publish-subscribe systems. We show that bydirectly addressing interest and network diversity as a first class designprinciple, the scale and performance of such systems can be improved. This thesis makes four major contributions. Firstly, we present Confluence, asystem that significantly reduces the time to transfer large files frommultiple publishers (sources) to a single subscriber (sink node) as compared tothe direct transfer strategy. Confluence lets scientists rapidly collect logsfrom either multiple PlanetLab hosts or multi-site cloud computinginfrastructures. It uses a novel source-2-source (s2s) overlay to speed up thetransfer of file blocks towards the sink. Intuitively, the s2s overlayfacilitates a source node (with a congested path to the sink) to utilize othersource nodes as intermediaries for routing file blocks to the sink.Concretely, our approach first poses the problem as a variant of flowoptimization among the source nodes. This captures the spatial diversity inbandwidth. We provide a theoretically optimal solution to this problem. Next,we augment this static solution with on-the-fly recomputation. This helps usexploit temporal diversity in bandwidth. Using Confluence, with 25 source nodesin a PlanetLab-like environment, 80% of nodes see a reduction in transfertime of at least 20% over the direct transfer strategy.Our second system, Rappel, is a peer-to-peer delivery mechanism for RSS feeds.Rappel is the first subject-based publish-subscribe system to be noiseless, betruly peer-to-peer, and perform soft real-time dissemination of messages.Noiselessness implies that a subscriber never receives messages for feeds thatit is not subscribed to, and is important because it improves fairness: theload imposed by the system on each participating node is proportional to thenode's demands from the system. Rappel exploits interest and networkdiversity via the use of periodic utility computations, wherein the utility ofa peer (``friend'') is derived using Bloom filters and network coordinates.Bloom filters succinctly capture the subscription interest of a node, whereasnetwork coordinates help capture the network location of a node. Via push-pullgossip, a node seeks to find a set of friends that provide good subscriptioncoverage while being in close network proximity. By having peers in closenetwork proximity, messages are disseminated with very low latency. The third contribution of this thesis is the Realistic Application-levelNetwork Simulation (RANS) framework. This is motivated by two observations.Firstly, system deployment is a labor-intensive exercise, and thus, limited inscale. For instance, PlanetLab, a large wide-area experimental network testbed,usually only has about 400 accessible nodes at any given moment. Secondly,due to the presence of extrinsic interferences, experiments are not replayable.Simulations provide an acceptable solution to these problems, however, theyoften fail to mimic realistic network conditions. In contrast to these twoapproaches, the RANS framework provides a modular programming interface thatcan be leveraged to produce both realistic simulation results and aready-to-deploy sockets binary. Our main contributions are in (1) developing arealistic and reusable selective granularity discrete-event simulator forPlanetLab, and (2) showing that the results generated by the RANS simulationframework closely match the results obtained by performing the same experimentson a PlanetLab deployment.Fourthly, the systems described in this thesis have been comprehensivelyevaluated via both PlanetLab deployment and simulation. Our deployments used upto 400 PlanetLab servers world-wide. Our largest simulations model 10,000nodes. Our experimental methodology is constructed using an extensive amount ofreal-world traces. For instance, to evaluate Rappel using realistic usersubscriptions, we gathered the subscription profiles of 1.8 million LiveJournalusers over six months. The evaluation presented in this thesis also makes useof the following previously collected traces: Internet topology, end-to-endlatency fluctuations between PlanetLab nodes, bandwidth availability betweenPlanetLab nodes, and end user churn observed in peer-to-peer file sharingapplications.
机译:本文提出了利用点对点发布-订阅系统特定类中系统多样性的新技术。我们表明,通过直接解决兴趣和网络多样性作为一流的设计原则,可以改善此类系统的规模和性能。本论文有四个主要贡献。首先,我们介绍Confluence,与直接传输策略相比,该系统可显着减少将大型文件从多个发布者(源)传输到单个订户(接收者节点)的时间。 Confluence使科学家可以从多个PlanetLab主机或多站点云计算基础结构中快速收集日志。它使用新颖的源2源(s2s)覆盖来加快文件块向接收器的传输。直观地讲,s2s覆盖促进了源节点(到接收器的路径拥塞)来利用其他源节点作为将文件块路由到接收器的中介。具体来说,我们的方法首先将问题提出为源节点之间流量优化的变体。这捕获了空间分集带宽。我们为这个问题提供了理论上最优的解决方案。接下来,我们通过动态重新计算来增强此静态解决方案。这有助于利用带宽的时间多样性。使用Confluence,在类似于PlanetLab的环境中有25个源节点,与直接传输策略相比,有80%的节点将传输时间减少了至少20%。我们的第二个系统Rappel是RSS的点对点交付机制feeds.Rappel是第一个基于主题的发布-订阅系统,该系统无噪声,对等地进行了无瑕的实时传输,并且可以进行消息的软实时分发。无噪声意味着订阅者永远不会收到未订阅的feed的消息,这很重要,因为它提高了公平性:系统在每个参与节点上施加的负载与该节点对系统的需求成比例。 Rappel通过定期的效用计算来利用兴趣和网络多样性,其中对等点(``朋友'')的效用是使用Bloom过滤器和网络坐标导出的.Bloom过滤器简洁地捕获了节点的订阅兴趣,而网络坐标则有助于捕获节点的订阅兴趣。节点的网络位置。节点通过push-pullgossip寻求找到一组朋友,这些朋友在网络附近时提供良好的订阅覆盖率。通过使对等点靠近网络,可以以极低的延迟传播消息。本文的第三个贡献是现实应用级网络仿真(RANS)框架。这是由两个观察结果引起的:首先,系统部署是一项劳动密集型的工作,因此规模有限。例如,PlanetLab是一个大型的广域实验网络测试平台,通常在任何给定时刻只有约400个可访问节点。其次,由于存在外部干扰,因此无法重做实验。模拟为这些问题提供了可接受的解决方案,但是,它们通常无法模仿现实的网络条件。与这两种方法相比,RANS框架提供了一个模块化的编程接口,可以利用该接口来生成实际的仿真结果和区域到部署套接字二进制文件。我们的主要贡献在于(1)为PlanetLab开发具有区域性且可重用的选择性粒度离散事件模拟器,以及(2)显示RANS仿真框架生成的结果与在PlanetLab部署中执行相同实验所获得的结果非常匹配。通过PlanetLab的部署和仿真,对本文所描述的系统进行了全面评估。我们的部署在全球范围内使用了多达400台PlanetLab服务器。我们最大的仿真模型可模拟10,000个节点。我们的实验方法是使用大量真实世界的痕迹构建的。例如,为了使用实际的用户名评估Rappel,我们在六个月内收集了180万LiveJournalusers的订阅资料。本文中提出的评估还利用了以下先前收集的踪迹:Internet拓扑,PlanetLab节点之间的端到端波动,PlanetLab节点之间的带宽可用性以及在对等文件共享应用程序中观察到的最终用户流失。

著录项

  • 作者

    Patel Jay A.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号