首页> 外文OA文献 >Development of a quantum cascade laser based spectrometer for high-resolution spectroscopy of gas phase C60
【2h】

Development of a quantum cascade laser based spectrometer for high-resolution spectroscopy of gas phase C60

机译:基于量子级联激光的气相C60高分辨光谱仪的研制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis research details the development of a quantum cascade laser (QCL) based continuous-wave cavity ringdown spectrometer (cw-CRDS) coupled to an oven supersonic expansion source. This is the first such work that uses a QCL in conjunction with the cw-CRD technique and a supersonic expansion source. The primary goal of the research is to acquire a rotationally-resolved, cold, gas-phase spectrum of an infraredband of C60 around 8.5 μm. A high-resolution spectrum will be valuable from an applied astronomy and fundamental spectroscopy perspective. While there have been astronomical detections of C60 emission from thermal emission or UV-excitation, a gas phase laboratory spectrum would enable astronomical searches for gas-phase C60 in different astronomical environments. Collection of such a spectrum would representa significant technical achievement, as it would be the largest and most symmetric molecule to have itsrotationally-resolved spectrum collected via gas-phase absorption spectroscopy.To test the performance of the instrument with the supersonic oven expansion source at room temperature,the v8 band of methylene bromide (CH2Br2) has been studied using supersonic expansions generatedfrom pinhole and slit nozzle geometries. In total, 297 transitions have been assigned for the three dominantmethylene bromide isotopologues with a fit standard deviation of 0.00024 cm−1 (7 MHz). Though methylenebromide is only a test molecule for the system, it is still the only work where a QCL was used to resolve therotational structure of a vibrational band that previously was unresolved in other studies.As an intermediate challenge between that offered by methylene bromide and C60, the first high-resolutionspectrum of a bending mode of pyrene (C16H10) around 1184 cm−1 has been collected. 464 transitions havebeen assigned, and a fit standard deviation of 0.00036 cm−1 (11 MHz) has been achieved using an asymmetrictop Hamiltonian without the inclusion of quartic distortion constants. Successful assignment of thevibrational band enabled analysis of the intensity of selected lines measured in the slit expansion, providinga gross estimate of the vibrational temperature between 60 - 90 K. This indicates efficient vibrational coolingin the supersonic expansion with a slit nozzle expansion at an initial oven temperature of 430 K. Thoughpyrene is not as large as C60, it still represents the largest such molecule to be rotational-resolved usinginfrared absorption spectroscopy.Spectral searches for C60 from 1184 – 1186 cm−1 have all resulted in non-detections despite favorablecalculated signal-to-noise values for single rovibrational transitions. The possible cause for lack of signalcould be insufficient vibrational cooling in the supersonic expansion, greatly reducing the population of C60molecules in their ground vibrational state. There are still combinations of carrier gas backing pressure andnozzle geometries that should be explored. The recent development and implementation of a larger boreoven will enable future spectroscopic searches with higher number densities of C60 seeded in the expansion.Outside of the laboratory work discussed in the thesis, a permutation inversion (PI) group theory analysishas been carried out on the fluxional benzenium ion (C6H7+). The benzenium ion is a proposed intermediatein the chemical pathway for the synthesis of benzene in dense interstellar clouds and protoplanetary nebulae.As a molecule of astrophysical insterest, it presents a future target for high-resolution spectroscopy in theMcCall group using the sensitive cooled resolved ion beam spectroscopy technique. A full PI group theoreticaltreatment of the benzenium ion may provide a useful first step in understanding future high resolutionmicrowave or infrared spectra, where tunneling splittings from the proton “ring-walk” motion may be seen.The PI treatment carried out in this work provides information on the number of expected tunnellingsplittings and spin statistical weights for the C6H7+ and C6D6H+ molecular ions. The linear combinationof localized wavefunctions (LCLW) method has been been successfully applied to C6D6H+ to provide aquantitative estimate of the splitting pattern for rotational levels in the ground state.
机译:本文的研究详细介绍了基于量子级联激光器(QCL)的连续波腔衰荡光谱仪(cw-CRDS)与烤箱超音速膨胀源耦合的开发。这是首次将QCL与cw-CRD技术和超音速扩展源结合使用的此类工作。该研究的主要目的是获得旋转分辨的冷气相光谱,其光谱为8.5μm左右的C60红外波段。从应用天文学和基本光谱学的角度来看,高分辨率光谱将是有价值的。尽管从热发射或紫外线激发中已经天文学检测到C60的排放,但气相实验室光谱将使人们能够在不同的天文环境中进行气相C60的天文搜索。收集这样的光谱将代表一项重大的技术成就,因为它将是通过气相吸收光谱法收集其旋转分辨光谱的最大,最对称的分子。要在室温下用超声烤箱扩展源测试仪器的性能在此温度下,已使用由针孔和狭缝喷嘴几何形状产生的超音速膨胀研究了亚甲基溴(CH2Br2)的v8谱带。总共为三个主要的亚甲基溴同位异构体分配了297个过渡峰,拟合标准偏差为0.00024 cm-1(7 MHz)。尽管亚甲基溴只是该系统的测试分子,但它仍然是唯一使用QCL解决振动带旋转结构的工作,而该振动带以前在其他研究中尚未解决。作为亚甲基溴和C60提供的中间挑战,已收集了184(C16H10)在1184 cm-1附近弯曲模式的第一张高分辨率光谱。已经分配了464个转换,并且使用不对称的哈密顿量实现了拟合度标准偏差0.00036 cm-1(11 MHz),而没有包含四次畸变常数。成功分配振动带后,就可以分析在缝隙扩展中测得的选定线的强度,从而可以粗略估算出振动温度在60-90 K之间。这表明在超声速扩展中,在初始烤箱温度下,缝隙喷嘴扩展时,可以有效地进行超声扩展中的振动冷却。 430K。虽然py不如C60大,但仍代表使用红外吸收光谱法可旋转解析的最大此类分子。尽管计算得到了有利的信号强度,但从1184年至1186 cm-1的C60光谱搜索均导致未检出-单振动过渡的噪声值。缺乏信号的可能原因可能是超音速膨胀过程中的振动冷却不足,从而大大降低了处于地面振动状态的C60分子的数量。仍然需要探索载气背压和喷嘴几何形状的组合。更大的气孔的最新开发和实施将使未来在扩容中使用更高密度的C60的光谱搜索成为可能。除了本文讨论的实验室工作外,还对通量进行了置换反演(PI)群理论分析苯离子(C6H7 +)。苯系离子是稠密星际云和原行星云中苯合成的化学途径中的拟议中间体,作为天体物理分子,它为使用敏感的冷却分辨离子束的McCall组提供了高分辨率光谱学的未来目标光谱技术。苯甲酸根离子的完整PI基团理论处理可能为理解未来的高分辨率微波或红外光谱提供有用的第一步,在此可能会看到质子“环行”运动产生的隧道分裂。这项工作中进行的PI处理提供了信息C6H7 +和C6D6H +分子离子的预期隧穿分裂次数和自旋统计权重。局部波函数的线性组合(LCLW)方法已成功应用于C6D6H +,以提供对基态旋转能级分裂模式的定量估计。

著录项

  • 作者

    Brumfield Brian;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号