首页> 外文OA文献 >Solid-state NMR studies of membrane proteins and membrane protein complexes
【2h】

Solid-state NMR studies of membrane proteins and membrane protein complexes

机译:膜蛋白和膜蛋白复合物的固态核磁共振研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Membrane proteins help control nearly every process in the cell, which is why approximately 50% of pharmaceuticals currently on the market target membrane proteins. Knowledge of structure-function relationships of these proteins could be leveraged to produce more efficient drugs. However, the traits that make membrane proteins so interesting also make them difficult targets for traditional structure elucidation techniques. X-ray crystallography relies on the use of single crystals, production of which are elusive for membrane proteins due to their inherent dynamic loops and stretches of hydrophobic residues, which contribute to aggregation and/or loss of function without the presence of a lipid environment. Solution NMR experiences difficulty dealing with slow molecular tumbling due to the large sizes of membrane proteins. Conversely, solid-state NMR (SSNMR) has no inherent size limitation and does not require the use of crystals, which presents SSNMR with the unique capability to study membrane proteins in native environments at atomic-resolution. However, this technique is still a relatively new tool for solving structures of biomolecules. Here, we begin to develop strategies for solid-state NMR de novo structure determination. We provide a “divide-and-conquer” investigation of an E. coli 41 kDa membrane protein complex, DsbA/DsbB. We begin by completing chemical shift assignments, the first step in structure determination in NMR studies, of the 21 kDa protein DsbA to optimize sensitivity and resolution of data collection and analysis of large systems. We then use this study to drive forward structural examination of the disulfide bond forming system DsbA/DsbB. Finally, SSNMR techniques are used to study a 144 kDa cytochrome bo3 ubiquinol oxidase demonstrating the power of this technique to investigate large membrane complexes in native environments.
机译:膜蛋白几乎可以控制细胞中的每个过程,这就是为什么目前市场上约50%的药物都将膜蛋白作为目标的原因。这些蛋白质的结构-功能关系的知识可以用于生产更有效的药物。然而,使膜蛋白如此有趣的特性也使它们成为传统结构阐明技术的目标。 X射线晶体学依赖于单晶的使用,由于其固有的动态环和疏水性残基的延伸,单晶的生产对于膜蛋白而言是难以捉摸的,这有助于在没有脂质环境的情况下聚集和/或丧失功能。由于膜蛋白的尺寸较大,溶液NMR难以处理缓慢的分子翻滚。相反,固态NMR(SSNMR)没有固有的大小限制,并且不需要使用晶体,这使SSNMR具有在原子分辨率下研究天然环境中膜蛋白的独特能力。但是,该技术仍然是用于解决生物分子结构的相对较新的工具。在这里,我们开始开发固态NMR从头确定结构的策略。我们提供了对大肠杆菌41 kDa膜蛋白复合物DsbA / DsbB的“分而治之”研究。我们首先完成21 kDa蛋白DsbA的化学位移分配(这是NMR研究中确定结构的第一步),以优化大型系统的数据收集和分析的灵敏度和分辨率。然后,我们使用这项研究来推动二硫键形成系统DsbA / DsbB的结构检查。最后,SSNMR技术用于研究144 kDa细胞色素bo3泛醇氧化酶,证明了该技术在天然环境中研究大型膜复合物的能力。

著录项

  • 作者

    Sperling Lindsay J.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号