首页> 外文OA文献 >An Experimental Investigation of Thermal Boundary Layer Structure and Heat Transfer in Oscillating Flows Using Cars Spectroscopy and Cold-Wire Anemometry
【2h】

An Experimental Investigation of Thermal Boundary Layer Structure and Heat Transfer in Oscillating Flows Using Cars Spectroscopy and Cold-Wire Anemometry

机译:汽车光谱和冷线风速测量振荡流动热边界层结构与传热的实验研究

摘要

Single-phase convective heat transfer enhancement is important in a variety ofresidential and industrial end-use energy applications. Convective heat transferenhancement can be achieved by passive (no external energy input) or active (requiringexternal energy input) means. Use of heat-transfer enhancement techniques oftenintroduces complexity into the physics of the flow and temperature fields. This additionalcomplexity can require the introduction of advanced, non-intrusive diagnostics foracquisition of detailed experimental velocity and temperature data. In this thesis, anexperimental investigation of active heat transfer enhancement through periodic, forcedflow oscillations is undertaken. The focus is on measurement of the time-resolvedtemperature field using both non-intrusive (CARS) and conventional (cold-wire)techniques.A dual-broadband, pure-rotational coherent anti-Stokes Raman scattering (CARS)apparatus is developed for the acquisition of non-intrusive temperature measurements inboth steady and oscillating thermal boundary layers. To our knowledge, this is the firstapplication of CARS to the study of convective heat transfer. Low-temperatureconvection measurements push the CARS technique to the limits of its precision, but themethod is desirable due to its ability to provide non-intrusive, spatially resolvedtemperature data with rapid frequency response. CARS temperature measurements from atripped steady flow and a laminar, oscillating boundary layer flow are presented. TheCARS apparatus developed for these studies provides a precision of ??4K, which is asignificant improvement over the precision obtained in typical CARS combustionapplications. Temperature data are acquired within 50 pm of the heat transfer surface allowing for non-intrusive estimates of the convective heat flux with a precision of ?? 15 -20%.A conventional, cold-wire technique is used to provide a more detailed description ofthe time-resolved structure of a thermal boundary layer in the oscillating flow. The coldwiretechnique provides for increased data acquisition rates relative to CARS, at theexpense of an ambiguous, systematic error associated with the intrusive nature of theprobe. The cold-wire technique is used to investigate oscillating boundary layer flowswith differing degrees of periodic flow reversal. Local, time-averaged Nusselt numberresults for the oscillating flow are a factor of two higher than accepted values for alaminar, developing channel flow. Periodic flow reversal did not provide a heat transferadvantage relative to non-reversed oscillating flows.
机译:单相对流换热的增强在各种住宅和工业最终用途能源应用中都很重要。对流换热可以通过被动(无外部能量输入)或主动(需要外部能量输入)方式来实现。传热增强技术的使用通常将复杂性引入流场和温度场的物理学。这种额外的复杂性可能需要引入高级的非侵入式诊断程序,以获取详细的实验速度和温度数据。本文通过周期性的强迫流动振荡进行主动传热的实验研究。重点是使用非侵入式(CARS)技术和常规(冷线)技术测量时间分辨温度场。为此,开发了一种双宽带,纯旋转相干反斯托克斯拉曼散射(CARS)装置。采集稳定和振荡热边界层的非侵入式温度测量值。据我们所知,这是CARS在对流传热研究中的首次应用。低温对流测量将CARS技术推向其精度极限,但是由于该方法能够提供具有快速频率响应的非侵入性,空间分辨的温度数据,因此该方法是理想的。给出了从滴流稳定流和层流振荡边界层流进行的CARS温度测量。为这些研究而开发的CARS设备提供了4K的精度,这是对典型CARS燃烧应用中获得的精度的重大改进。在传热表面的50 pm内获取温度数据,从而可以非介入式估算对流热通量,精度为? 15 -20%。使用传统的冷线技术对振荡流中热边界层的时间分辨结构进行了更详细的描述。相对于CARS,冷线技术提供了更高的数据采集速率,但代价是与探针的侵入性相关的模棱两可的系统性错误。使用冷线技术研究具有不同周期性逆流程度的振荡边界层流。振荡流的本地时间平均努塞尔数结果比层流形成的通道流的可接受值高两倍。相对于非反向振荡流,周期性的反向流没有提供传热的优势。

著录项

  • 作者

    Kearney S.P.;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号