首页> 外文OA文献 >Towards building reliable solar-powered remotely-deployed sensing systems
【2h】

Towards building reliable solar-powered remotely-deployed sensing systems

机译:建设可靠的太阳能远程部署传感系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Driven by new demands in both civil and national-security applications such as environmental monitoring and border control, sensing devices will not only be deployed at home and in urban areas, but also pervade every corner of the world. Remotely deployed systems have to work in an unattended manner, face harsh and complex environments, and rely on unstable energy sources (e.g., solar energy). Therefore, building remote sensing systems and collect data of interests from them are confronted with unique challenges. First, data collection is subject to loss in communication because wireless links that such systems rely on are error-prone by nature. Second, because of the limited connectivity to the outside world via wireless communication, the sensory data have to be stored in the system when the remote deployment is disconnected from the basestation, and thus are facing uncontrolled loss in storage caused by physical dynamics. Third, when remotely-deployed nodes become unresponsive, it is generally hard to determine what caused the anomalous silence and assess the status of the data collection process without sending a person to the field. Furthermore, the dynamic nature of the energy source calls for new system designs. In this thesis, we present a suite of our work on addressing the above challenges. In particular, we propose adaptive schemes to dynamically adjust the coding redundancy used to mitigate the data loss in communication and storage under time varying energy constraints, and we propose a tele-diagnostic tool to automatically infer node states based on its power consumption traces. The proposed work has been evaluated on a real solar-powered sensing testbed that we designed and deployed.
机译:在诸如环境监测和边界控制等民用和国家安全应用的新需求的推动下,传感设备不仅将部署在家庭和城市地区,而且将遍及世界的每个角落。远程部署的系统必须以无人看管的方式工作,面对严峻而复杂的环境,并且依赖不稳定的能源(例如太阳能)。因此,建立遥感系统并从中收集感兴趣的数据面临着独特的挑战。首先,由于这种系统所依赖的无线链路本质上容易出错,因此数据收集会丢失通信。其次,由于通过无线通信与外界的连通性有限,当远程部署与基站断开连接时,传感数据必须存储在系统中,因此面临着由于物理动力学而导致的不可控制的存储损失。第三,当远程部署的节点无响应时,通常很难确定导致异常沉默的原因并评估数据收集过程的状态,而无需派人到现场。此外,能源的动态特性要求新的系统设计。在本文中,我们提出了应对上述挑战的一系列工作。特别是,我们提出了自适应方案来动态调整用于在时变能量约束下减轻通信和存储中的数据丢失的编码冗余,并且我们提出了一种远程诊断工具,可以基于其功耗轨迹自动推断节点状态。我们在设计和部署的真实太阳能感应测试床上对拟议工作进行了评估。

著录项

  • 作者

    Yang Yong;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号