首页> 外文OA文献 >Amino acid racemase responsible for the biosynthesis of D-aspartate and D-serine signaling molecules in Aplysia californica central nervous system
【2h】

Amino acid racemase responsible for the biosynthesis of D-aspartate and D-serine signaling molecules in Aplysia californica central nervous system

机译:氨基酸消旋酶负责海兔中枢神经系统中D-天冬氨酸和D-丝氨酸信号分子的生物合成

摘要

ABSTRACTWhile dogma states that animals use L-amino acids, several D-amino acids have been found in animals including humans since the 1980s. Two D-amino acids have attracted significant research interests because of their cell-cell signaling functions in animal nervous systems. D-serine (D-Ser) can affect the activity and plasticity of N-methyl-D-aspartate (NMDA) receptor, a molecule that forms the basis of learning and memory in the brain. D-aspartate (D-Asp) is found in neuroendocrine and endocrine tissues, potentially playing roles in hormone synthesis and/or release. However, many details on the physiological functions of D-Ser and D-Asp and their signaling pathways remain unknown. Extensive studies are needed to fully understand the roles of these two putative neuronal signaling molecules and their effects on the animal brain and endocrine functions. D-Ser and D-Asp biosynthetic enzymes are essential to study the physiological functions of the D-amino acids in animal nervous systems. However, the knowledge of such enzymes has been limited, especially the characterization of D-Asp synthetic enzymes. Although the first enzyme that can make D-Ser from L-Ser was isolated from animal brain tissue in 1999, the first nervous system associated D-Asp synthetic enzyme was not described until 2010. The lack of the knowledge of a D-Asp biosynthetic enzyme has significantly hindered the research of D-Asp physiological function in animal nervous system. The molecular mechanism underlying D-Asp action is still not clear. In invertebrates, high levels of D-Asp had been found in central nervous systems (CNS) of some marine mollusks including Aplysia californica, a model animal for cellular and systemic neuroscience study, and D-Asp showed neurotransmitter behaviors in Aplysia CNS, indicating D-Asp signaling pathway is conserved among animal kingdoms. Thus, studying D-Asp in Aplysia can provide valuable insights into mammalian system function.As the biosynthetic pathway of D-Asp in invertebrate is not known, one significant goal of this project has been to uncover the biosynthetic enzyme responsible for the biosynthesis of D-Asp in cerebral ganglion in Aplysia CNS. Using combining bioinformatics, molecular biology and biochemical methods, a d-amino acid racemase 1 (DAR1) has been discovered, cloned and characterized from the Aplysia CNS. The biosynthesis of D-Ser and D-Asp in Aplysia CNS cerebral ganglion F/C neuronal clusters via this enzyme has been characterized; these are the regions where high levels of D-Asp were previously detected. DAR1 is the first serine racemase and the first nervous system associated aspartate racemase described from an invertebrate system, and it is also the first enzyme with a dual serine and aspartate activity described in a eukaryotic system. The enzyme thus becomes a valuable model to study D-Ser and D-Asp physiological functions in a well-characterized model system, to investigate D-Ser and D-Asp signaling pathways and their interactions, and to examine the structure-function relationships of pyridoxal-5???-phosphate (PLP) dependent amino acid racemase.
机译:虽然教条指出动物使用L-氨基酸,但自1980年代以来,在包括人类在内的动物中发现了几种D-氨基酸。由于两种D-氨基酸在动物神经系统中具有细胞间信号传导功能,因此引起了广泛的研究兴趣。 D-丝氨酸(D-Ser)可以影响N-甲基-D-天冬氨酸(NMDA)受体的活性和可塑性,该分子是大脑学习和记忆的基础。在神经内分泌和内分泌组织中发现D-天冬氨酸(D-Asp),可能在激素合成和/或释放中起作用。然而,关于D-Ser和D-Asp的生理功能及其信号传导途径的许多细节仍然未知。需要进行广泛的研究,以充分了解这两种假定的神经元信号分子的作用及其对动物大脑和内分泌功能的影响。 D-Ser和D-Asp生物合成酶对于研究动物神经系统中D-氨基酸的生理功能至关重要。然而,此类酶的知识受到限制,尤其是D-Asp合成酶的表征。尽管1999年从动物脑组织中分离出了可从L-Ser生成D-Ser的第一种酶,但直到2010年才描述了与神经系统相关的D-Asp合成酶。缺乏D-Asp生物合成的知识该酶显着阻碍了动物神经系统中D-Asp生理功能的研究。 D-Asp作用的分子机制尚不清楚。在无脊椎动物中,在一些海洋软体动物的中枢神经系统(CNS)中发现了高水平的D-Asp,包括用于细胞和系统神经科学研究的模型动物Aplysia californica,并且D-Asp在Aplysia CNS中显示出神经递质的行为,表明D -Asp信号通路在动物界中是保守的。因此,在海藻中研究D-Asp可以为哺乳动物系统功能提供有价值的见解。由于D-Asp在无脊椎动物中的生物合成途径尚不清楚,因此该项目的一个重要目标是发现负责D的生物合成的生物合成酶。 -Aplysia CNS中脑神经节中的-Asp。结合生物信息学,分子生物学和生化方法,已从Aplysia CNS中发现,克隆和鉴定了d-氨基酸消旋酶1(DAR1)。通过这种酶已经表征了海藻中枢神经系统F / C神经元簇中D-Ser和D-Asp的生物合成。这些是先前检测到高水平D-Asp的区域。 DAR1是无脊椎动物系统中描述的第一个丝氨酸消旋酶和第一个神经系统相关的天冬氨酸消旋酶,它也是真核系统中描述的第一个具有双重丝氨酸和天冬氨酸活性的酶。因此,该酶成为有价值的模型,可在功能完善的模型系统中研究D-Ser和D-Asp的生理功能,研究D-Ser和D-Asp信号传导途径及其相互作用,并检查其结构-功能关系。吡ido醛-5-磷酸(PLP)依赖性氨基酸消旋酶。

著录项

  • 作者

    Wang Liping;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号