首页> 外文OA文献 >Data Obfuscation for Privacy-Enhanced Collaborative Filtering
【2h】

Data Obfuscation for Privacy-Enhanced Collaborative Filtering

机译:隐私增强协同过滤的数据混淆

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Collaborative Filtering (CF) is an attractive and reliable recommendation technique. CF is typically implemented using a centralized storage of user profiles and this is a severe privacy danger, since an attack to this central repository can endanger the quality of the recommendations and result in a leak of personal data. This work investigates how a decentralized distributed storage of user profiles combined with data obfuscation techniques can mitigate the above dangers. In an experimental evaluation we initially show that relatively large parts of the profiles can be obfuscated with a minimal increase of Mean Average Error (MAE). This contradictory result motivates further experiments where we measured the increase in prediction error in two cases: a) when a more complex prediction task is considered, i.e., a data set containing more diverse (extreme) rating values; b) when only ratings with specific values are obfuscated. The results of these experiments clarify the roles of various rating values and will help to better implement an effective obfuscation policy.
机译:协同过滤(CF)是一种有吸引力且可靠的推荐技术。 CF通常是使用用户配置文件的集中存储来实现的,这是严重的隐私危险,因为对该中央存储库的攻击可能危害建议的质量并导致个人数据泄漏。这项工作研究了用户配置文件的分散式分布式存储与数据混淆技术如何可以减轻上述危险。在实验评估中,我们最初显示,可以通过最小平均平均误差(MAE)的增加来模糊化相对较大部分的轮廓。这个矛盾的结果激发了进一步的实验,其中我们在两种情况下测量了预测误差的增加:a)当考虑更复杂的预测任务时,即,一个包含更多(最高)额定值的数据集; b)仅混淆具有特定值的等级时。这些实验的结果阐明了各种评级值的作用,将有助于更好地实施有效的混淆政策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号