首页> 外文OA文献 >Three-Dimensional Volume Reconstruction from Fluorescent Confocal Laser Scanning Microscopy Imagery
【2h】

Three-Dimensional Volume Reconstruction from Fluorescent Confocal Laser Scanning Microscopy Imagery

机译:荧光共聚焦激光扫描显微镜图像的三维体积重建

摘要

In this dissertation, I present a problem of three-dimensional volume reconstruction from fluorescent confocal laser scanning microscopy (CLSM) imagery. I overview a three-dimensional volume reconstruction framework which consists of (a) volume reconstruction procedures using multiple automation levels, feature types, and feature dimensionalities, (b) a data-driven registration decision support system, (c) an evaluation study of registration accuracy, and (d) a novel intensity enhancement technique for 3D CLSM volumes.The motivation for developing the framework came from the lack of 3D volume reconstruction techniques for CLSM image modality. The 3D volume reconstruction problem is challenging due to significant variations of intensity and shape of cross sectioned structures, unpredictable and inhomogeneous geometrical warping during medical specimen preparation, and an absence of external fiduciary markers. The framework addresses the problem of automation in the presence of the above challenges as they are frequently encountered during CLSM-based 3D volume reconstructions used for cell biology investigations.The objectives of the presented three-dimensional volume reconstruction framework are summarized as follows: (1) automate alignment of sub-volumes (physical sections) from multiple cross sections, (2) obtain high resolution image frames by mosaicking (i.e., stitching together), (3) quantify the accuracy of volume reconstruction using multiple techniques, and (4) visualize the reconstructed volumes in three-dimensional environments for visual inspection and quantitative interpretation.In this dissertation, the three-dimensional sub-volume registration problem is viewed primarily as an alignment problem. It is approached by extracting two- or three-dimensional features from each sub-volume and registering the sub-volumes based on the analysis of detected features. I present three sets of techniques classified as pre-processing, main-processing, and post-processing techniques for 3D volume reconstruction. First, the pre-processing steps include (a) sub-volume intensity analysis for image frame selection and feature detection, (b) tile mosaicking using different automation levels and user expertise followed by accuracy evaluation, (c) 2D region or 3D volume segmentation using disk/sphere-based region/volume growing technique, and (d) feature detection based on 2D or 3D segmentation for accurate feature matching and registration alignment optimization. Second, the main-processing steps aim at achieving the most accurate sub-volume alignment, and include (a) feature matching (feature correspondence) using different levels of automation and collaborative mechanisms with web services followed by accuracy evaluations, (b) registration refinement based on different registration accuracy evaluation criteria, (c) optimal global transformation estimation, and (d) sub-volume transformation to construct a 3D volume for visualization. Finally, the volume post-processing step enhances visual saliency of the reconstructed 3D volume by minimizing distortions of the local image intensities (e.g., gradients of edges), and provides comparative results for enhancement with the existing methods using several image quality assessment metrics.The primary contribution of this dissertation is the presentation of a new theoretical model for three-dimensional volume reconstruction that includes reconstruction methodology, a data-driven registration decision support, automation, intensity enhancement for processing volumetric image data from fluorescent confocal laser scanning microscopes (CLSM). Researched methods have been fully implemented in the Image to Knowledge (I2K) software package developed at the National Center for Supercomputing Applications (NCSA).The broader impact of my work is in providing the algorithms in a form of web-enabled tools to the medical community so that medical researchers can minimize laborious and time intensive 3D volume reconstructions using the tools and computational resources at NCSA.
机译:在本文中,我提出了从荧光共聚焦激光扫描显微镜(CLSM)图像进行三维体积重建的问题。我概述了一个三维体积重建框架,该框架由(a)使用多个自动化级别,特征类型和特征维的体积重建过程,(b)数据驱动的注册决策支持系统,(c)评估注册研究(d)一种用于3D CLSM体积的新颖强度增强技术。开发该框架的动机来自缺乏用于CLSM图像模态的3D体积重建技术。由于横截面结构的强度和形状的显着变化,医学标本制备过程中不可预测且不均匀的几何翘曲以及缺少外部基准标记,因此3D体积重建问题具有挑战性。该框架解决了存在上述挑战时的自动化问题,这些挑战在用于细胞生物学研究的基于CLSM的3D体积重建中经常遇到。提出的三维体积重建框架的目标概括如下:(1 )自动对齐多个横截面中的子体积(物理部分),(2)通过镶嵌(即缝合在一起)获得高分辨率图像帧,(3)使用多种技术量化体积重建的准确性,以及(4)在三维环境中可视化重建后的体积,以进行可视化检查和定量解释。本文将三维子体积配准问题主要视为对齐问题。通过从每个子体积中提取二维或三维特征并基于对检测到的特征的分析来注册子体积来实现该方法。我介绍了三类技术,分别是3D体积重建的预处理,主处理和后处理技术。首先,预处理步骤包括(a)用于图像帧选择和特征检测的子体积强度分析;(b)使用不同的自动化级别和用户专业知识进行图块拼接,然后进行准确性评估;(c)2D区域或3D体积分割使用基于磁盘/球形的区域/体积增长技术,以及(d)基于2D或3D分割的特征检测,以进行准确的特征匹配和配准对齐优化。其次,主要处理步骤旨在实现最准确的子卷对齐,包括(a)使用不同级别的自动化和与Web服务的协作机制进行特征匹配(特征对应),然后进行准确性评估,(b)优化注册基于不同的配准精度评估标准,(c)最佳全局变换估计,以及(d)子体积变换,以构建用于可视化的3D体积。最终,体积后处理步骤通过最小化局部图像强度的失真(例如边缘的梯度)来增强重建的3D体积的视觉显着性,并提供使用多个图像质量评估指标的现有方法进行增强的比较结果。本论文的主要贡献是提出了一种用于三维体积重建的新理论模型,该模型包括重建方法,数据驱动的注册决策支持,自动化,强度增强,用于处理来自荧光共聚焦激光扫描显微镜(CLSM)的体积图像数据。在国家超级计算应用中心(NCSA)开发的图像到知识(I2K)软件包中,已完全实施了研究方法。我的工作所带来的更广泛影响是为医疗领域提供了一种基于Web的工具形式的算法。社区,以便医学研究人员可以使用NCSA上的工具和计算资源,将费力和时间密集的3D体重建最小化。

著录项

  • 作者

    Lee Sang-Chul;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号