首页> 外文OA文献 >Development of a coupled CFD???system-code capability (with a modified porous media model) and its applications to simulate current and next generation reactors
【2h】

Development of a coupled CFD???system-code capability (with a modified porous media model) and its applications to simulate current and next generation reactors

机译:开发耦合CFD系统代码能力(具有改进的多孔介质模型)及其在模拟当前和下一代反应堆中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivated by recent developments in the field of Computational Fluid Dynamics (CFD) and recognizing the limitations on computing power, this dissertation is aimedat combining the desirable features of system codes and CFD codes, thus elevating the nuclear reactor thermal hydraulics simulation capabilities to address problemsthat cannot be addressed with existing computational tools. The goal is achieved by first implementing improved porous media models in a commercial CFD codeand then by judicious coupling of the CFD code with a coarse nuclear system code.Computationally intensive CFD is used in spatial domains where the flow is expected to be three-dimensional; whereas a system code is used to simulate regions where the flow is expected to be one-dimensional or to simulate components such as pumps, etc.Work accomplished in this dissertation can be divided into the following five parts.??? Test a commercial CFD code, FLUENT, by solving a nuclear-specific benchmark problem. Extend the porous media turbulence model in the CFD code using User-Defined Functions (UDFs).??? Demonstrate the porous media simulating capability by a nuclear system using a combined CFD model of clear flow and porous media flow(for core region).??? Propose a hybrid approach to couple a CFD code with a nuclear system code. Develop the coupled CFD???system-code approach. Verify the coupled code using a simple flow in a network of pipes.??? Test the large scale application of the coupled CFD???system-code by modeling the Nuclear Steam Supply System (NSSS) of a Pressurized Water Reactor (PWR).??? Demonstrate the potential of the coupled CFD???system-code for next generation reactors by applying it to a Gas Turbine - Modular Helium Reactor (GTMHR).Part 1 is accomplished by implementing a modified k ??? ?? turbulence model for porous media in a CFD code (FLUENT) using UDFs. Transverse flow through porous media is simulated with the extended CFD code. Results are compared with experimental data.In the second part of this thesis, the International Standard Problem (ISP) No. 43, rapid boron-dilution experiment, is simulated using FLUENT to verify capability to model nuclear systems. Australian Replacement Research Reactor (RRR) is modeled to demonstrate application of CFD, with porous media model for the reactor core. The parameters for the porous media model are obtained through a series of assembly level CFD simulations.RELAP5-3D is introduced in Part 3 as the nuclear system code for coupled CFD???System-code development. UDF feature of FLUENT is used to develop the interface for this coupling effort. This innovative coupling approach is verified by comparing the results of a simple transient flow problem obtained using the coupled codes with the results from the CFD-only simulation and the system-code-onlysimulation.Part 4 is the first large scale application of the coupled CFD???system-code. A simplified PWR NSSS is modeled by the coupled CFD???system-code approach developedin Part 3. Time-dependent three-dimensional reactor power profile is calculated in a PWR transient scenario which investigates the spatial impact of the coolantthermal mixing by using a specially developed discrete reactor kinetic model.In Part 5 simulation of reactor coolant system in the GT-MHR vessel is carried out using the coupled CFD???system-code, demonstrating the potential of the coupled CFD???system-code approach to Gen IV reactor design and optimization.Thus, by implementing an improved porous media model in a CFD code, and combining the best features of a CFD code and a nuclear system analysis code, a simulationcapability has been developed to model three-dimensional effects in complete integral systems with existing computational resources. The utility of this capabilityhas been demonstrated by applications to a PWR and to a GT-MHR. This coupled CFD???system-code capability will be useful in developing better optimized reactor designs by reducing reliance on conservative models and simulations.
机译:基于计算流体动力学(CFD)领域的最新发展并认识到计算能力的局限性,本论文旨在结合系统代码和CFD代码的理想功能,从而提高了核反应堆热工水力仿真能力,以解决无法解决的问题。使用现有的计算工具解决。通过首先在商业CFD代码中实现改进的多孔介质模型,然后明智地将CFD代码与粗核系统代码耦合,可以实现该目标。计算密集型CFD被用于空间域(流量应为三维);本论文完成的工作可分为以下五个部分。通过解决特定于核的基准问题,测试商业CFD代码FLUENT。使用用户定义函数(UDF)在CFD代码中扩展多孔介质湍流模型。演示核系统使用透明流和多孔介质流(用于核心区域)的组合CFD模型对多孔介质进行模拟的能力。提出一种将CFD代码与核系统代码耦合的混合方法。开发耦合的CFD ???系统代码方法。使用管道网络中的简单流来验证耦合的代码。通过对压水堆(PWR)的核蒸汽供应系统(NSSS)进行建模,测试耦合CFD系统代码的大规模应用。通过将其应用到燃气轮机-模块化氦反应堆(GTMHR)上,证明下一代C反应堆系统代码的潜力。第1部分是通过实施改进的k来完成的。 ??使用UDF的CFD代码(FLUENT)中的多孔介质湍流模型。通过扩展的CFD代码模拟通过多孔介质的横向流动。将结果与实验数据进行比较。在本文的第二部分中,使用FLUENT对国际标准问题(ISP)第43号快速硼稀释实验进行了仿真,以验证对核系统进行建模的能力。对澳大利亚替代研究堆(RRR)进行建模,以证明CFD的应用,并为反应堆堆芯提供了多孔介质模型。多孔介质模型的参数是通过一系列装配级CFD模拟获得的。RELAP5-3D在第3部分中介绍为耦合CFD的核系统代码。 FLUENT的UDF功能用于开发此耦合工作的接口。通过将使用耦合代码获得的简单瞬变流问题的结果与仅CFD仿真和仅系统代码仿真的结果进行比较,验证了这种创新的耦合方法。第4部分是耦合CFD的首次大规模应用系统代码。简化的压水堆NSSS通过在第3部分中开发的耦合CFD ???系统代码方法进行建模。在压水堆瞬态场景中计算时间相关的三维反应堆功率曲线,该瞬态场景通过专门研究冷却液热混合的空间影响在第五部分中,GT-MHR容器中反应堆冷却剂系统的仿真使用耦合的CFD系统代码进行,证明了耦合的CFD系统代码方法对发电的潜力。 IV反应堆的设计和优化。因此,通过在CFD代码中实现改进的多孔介质模型,并结合CFD代码和核系统分析代码的最佳功能,已经开发出了模拟能力,可以对完整的三维效应进行建模具有现有计算资源的系统。 PWR和GT-MHR的应用已证明了此功能的实用性。通过减少对保守模型和仿真的依赖,这种耦合的CFD-系统代码功能将有助于开发更好的优化反应堆设计。

著录项

  • 作者

    Yan Yizhou;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号