首页> 外文OA文献 >An alternative approach to normal parameter reduction algorithms for decision making using a soft set theory / Sani Danjuma
【2h】

An alternative approach to normal parameter reduction algorithms for decision making using a soft set theory / Sani Danjuma

机译:使用软集理论/ sani Danjuma进行决策的正常参数约简算法的另一种方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The soft set theory is a mathematical tool that deals with uncertainty, imprecise and vagueness in decision systems. It has been widely used to identify irrelevant parameters and make reduction of parameters for decision making, in order to bring out the optimal choices of the decision systems. Many normal parameter reduction algorithms exist to handle parameter reduction and maintain consistency of decision choices. However, they require much time to repeatedly run the algorithms to reduce unnecessary parameters using either parameter important degree or oriented parameter sum. This study will firstly review the different parameter reduction and decision making techniques for soft set and hybrid soft sets under unpleasant set of hypothesis environment as well as performance analysis of their derived algorithms. Consequently, the summary of the current literature in those areas of research were given, pointed out the limitations of previous works and areas that require further research works. Secondly, an alternative algorithm for parameter reduction and decision making based on soft set theory was proposed. The proposed algorithm showed that it can reduce the computational complexity and run time compared to baseline algorithms. Finally, to evaluate the proposed algorithm, thorough experimentation on both real life and synthetic binary-valued data set were performed. The experimental result shows that the proposed algorithm was feasible and has relatively reduced the computational complexity and running time with an average of 56 percent compared with the existing algorithms. In addition, the algorithm was relatively easy to understand compare to the state of the art of normal parameter reduction algorithm. The proposed algorithm was able to avoid the use of parameter important degree, decision partition and finding the multiple of the universe within the sets. This study contributes significantly in reducing the computational complexity and running time as compared with Normal Parameter Reduction algorithm (NPR) and New Efficient Normal Parameter Reduction algorithm (NENPR).
机译:软集合理论是一种数学工具,用于处理决策系统中的不确定性,不精确性和模糊性。它被广泛用于识别不相关的参数并减少用于决策的参数,以带出决策系统的最佳选择。存在许多常规的参数约简算法来处理参数约简并保持决策选择的一致性。但是,它们需要大量时间来重复运行算法,以使用重要参数程度或定向参数总和来减少不必要的参数。这项研究将首先回顾在假设环境不理想的情况下,软集和混合软集的不同参数约简和决策技术,以及对其衍生算法的性能分析。因此,对这些研究领域的现有文献进行了总结,指出了先前工作的局限性以及需要进一步研究的领域。其次,提出了一种基于软集理论的参数约简决策方法。所提出的算法表明,与基线算法相比,它可以降低计算复杂度和运行时间。最后,为了评估所提出的算法,对现实生活和合成的二进制值数据集进行了全面的实验。实验结果表明,该算法是可行的,与现有算法相比,平均降低了56%的计算复杂度和运行时间。此外,与常规参数约简算法的最新技术相比,该算法相对易于理解。所提出的算法能够避免使用参数重要度,决策分区以及在集合内找到宇宙的倍数。与常规参数归约算法(NPR)和新型高效常规参数归约算法(NENPR)相比,该研究在降低计算复杂度和运行时间方面做出了重要贡献。

著录项

  • 作者

    Sani Danjuma;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号