首页> 外文OA文献 >An extension of multhopp's lifting surface theory to include the effect of flaps, ailerons, etc
【2h】

An extension of multhopp's lifting surface theory to include the effect of flaps, ailerons, etc

机译:multhopp升力面理论的扩展,包括襟翼,副翼等的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The subsonic lifting surface theory due to H. Multhopp (Ref. 1)has been extended to include a chordwise discontinuity in the slope ofthe lifting surface, i.e. to include the effect of flaps, or ailerons.By representing the chordwise loading of a two-dimensional flapped flatplate in closed form, a new loading function is used in the L2representation of the chordwise loading, and a new influence function kis defined. This function is dependent on the parameter ᴓh whichdescribes the hinge position, and so the tabulation which has beendone for the influence functions, i and j, in Multhopp’s original methodhave to be repeated for values of ᴓh.The method is restricted to linearized, non-viscous flow about thinwings of moderate aspect ratio of any planform. Values of lift,pitching moment and centre of pressure can be obtained across the spanfor deflected flaps, and the theoretical effect of planform can be studied.An example has been calculated for a straight rectangular wing ofaspect ratio 6 with a full span 20% chord, trailing edge flap. Acomparison with available experimental results shows that viscous effectsare important in obtaining the correct magnitudes of lift and pitching moments.
机译:H.Multhopp(参考文献1)提出的亚音速升力面理论已经扩展到在升力面的坡度中包括弦向不连续性,即包括襟翼或副翼的影响。尺寸为封闭形式的拍打平板,在弦向载荷的L2表示中使用了新的载荷函数,并定义了新的影响函数kis。此函数取决于描述铰链位置的参数ᴓh,因此对于ᴓh值必须重复在Multhopp原始方法中为影响函数i和j完成的列表。该方法仅限于线性化,非关于任何平面形状的纵横比中等的细翼的粘性流动。可以得出跨度的襟翼跨度的升力,俯仰力矩和压力中心的值,并且可以研究平面形状的理论效果。以一个纵横比为6且直跨度为20%的直矩形矩形机翼为例,后缘襟翼。与可用的实验结果进行比较表明,粘性效应对于获得正确的升力和俯仰力矩大小很重要。

著录项

  • 作者

    Simpson Robert W.;

  • 作者单位
  • 年度 1960
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号