首页> 外文OA文献 >Controlling shell-side crystal nucleation in a gas-liquid membrane contactor for simultaneous ammonium bicarbonate recovery and biogas upgrading
【2h】

Controlling shell-side crystal nucleation in a gas-liquid membrane contactor for simultaneous ammonium bicarbonate recovery and biogas upgrading

机译:控制气液膜接触器中的壳侧晶体成核,以同时回收碳酸氢铵和沼气

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A gas–liquid hollow fibre membrane contactor (HFMC) process has been introduced for carbon dioxide (CO2) separation from biogas where aqueous ammonia (NH3) is used to chemically enhance CO2 absorption and initiate heterogeneous nucleation of the reaction product ammonium bicarbonate at the membrane–solvent interface. Aqueous ammonia absorbents (2–7 M) were initially used in single pass for CO2 separation from a synthetic biogas where nucleation of ammonium bicarbonate crystals was observed at the perimeter of the micropores. Recirculation of the aqueous ammonia absorbent encouraged the growth of ammonium bicarbonate crystals on the shell-side of the membrane that measured several microns in diameter. However, at high aqueous NH3 concentrations (3–7 M), lumen side crystallisation occurred and obstructed gas flow through the lumen of the HFMC. The suggested mechanism for lumen-side crystallisation was absorbent breakthrough into the lumen due to pore wetting which was promoted by low absorbent surface tension at high NH3 concentration. Preferential shell-side nucleation can therefore be promoted by (1) raising surface tension of the absorbent and (2) selection of a membrane with a more regulated pore shape than the PTFE membrane used (d/L 0.065) as both actions can diminish solvent ingress into the pore. This was evidenced using 2 M NH3 absorbent where shell-side crystallisation was evidenced without the onset of lumen side crystallisation. Raising surface tension through the inclusion of salt into the chemical absorbent also promoted greater CO2 flux stability. Importantly, this study demonstrates that chemically enhanced HFMC are an attractive prospect for gas–liquid separation applications where reaction product recovery offers further economic value.
机译:引入了一种气液中空纤维膜接触器(HFMC)工艺,用于从沼气中分离二氧化碳(CO2),其中氨水(NH3)用于化学增强CO2吸收并引发反应产物碳酸氢铵在膜上的异相成核–溶剂界面。最初使用氨水吸收剂(2-7 M)从合成沼气中分离CO2,在该合成沼气中在微孔周围观察到碳酸氢铵晶体的形核。氨水吸收剂的再循环促进了碳酸氢铵晶体在直径为几微米的膜的壳侧上的生长。但是,在高浓度的NH3水溶液(3–7 M)下,发生管腔侧结晶,并阻碍了气体流过HFMC的管腔。管腔侧结晶的建议机理是由于孔润湿导致吸收剂渗透进入管腔,这是由于在高NH3浓度下较低的吸收剂表面张力所引起的。因此,可以通过(1)提高吸收剂的表面张力和(2)选择比所使用的PTFE膜(d / L 0.065)具有更规则的孔形的膜来促进壳侧成核,因为这两种作用都会减少溶剂进入毛孔。使用2 M NH3吸收剂可以证明这一点,其中可以证明壳侧结晶没有发生管腔侧结晶。通过在化学吸收剂中加入盐来提高表面张力,还可以提高CO2通量的稳定性。重要的是,这项研究表明,化学增强的HFMC对于气液分离应用具有诱人的前景,其中反应产物的回收具有更高的经济价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号