首页> 外文OA文献 >Control of a hybrid electric vehicle with predictive journey estimation
【2h】

Control of a hybrid electric vehicle with predictive journey estimation

机译:具有预测行程估计的混合动力电动汽车控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Battery energy management plays a crucial role in fuel economy improvement ofcharge-sustaining parallel hybrid electric vehicles. Currently available control strategiesconsider battery state of charge (SOC) and driver’s request through the pedal input indecision-making. This method does not achieve an optimal performance for saving fuelor maintaining appropriate SOC level, especially during the operation in extremedriving conditions or hilly terrain. The objective of this thesis is to develop a controlalgorithm using forthcoming traffic condition and road elevation, which could be fedfrom navigation systems. This would enable the controller to predict potential ofregenerative charging to capture cost-free energy and intentionally depleting batteryenergy to assist an engine at high power demand.The starting point for this research is the modelling of a small sport-utility vehicle bythe analysis of the vehicles currently available in the market. The result of the analysisis used in order to establish a generic mild hybrid powertrain model, which issubsequently examined to compare the performance of controllers. A baseline isestablished with a conventional powertrain equipped with a spark ignition directinjection engine and a continuously variable transmission. Hybridisation of this vehiclewith an integrated starter alternator and a traditional rule-based control strategy ispresented. Parameter optimisation in four standard driving cycles is explained, followedby a detailed energy flow analysis.An additional potential improvement is presented by dynamic programming (DP),which shows a benefit of a predictive control. Based on these results, a predictivecontrol algorithm using fuzzy logic is introduced. The main tools of the controllerdesign are the DP, adaptive-network-based fuzzy inference system with subtractiveclustering and design of experiment. Using a quasi-static backward simulation model,the performance of the controller is compared with the result from the instantaneouscontrol and the DP. The focus is fuel saving and SOC control at the end of journeys,especially in aggressive driving conditions and a hilly road. The controller shows agood potential to improve fuel economy and tight SOC control in long journey and hillyterrain. Fuel economy improvement and SOC correction are close to the optimal solution by the DP, especially in long trips on steep road where there is a large gapbetween the baseline controller and the DP. However, there is little benefit in short tripsand flat road. It is caused by the low improvement margin of the mild hybrid powertrainand the limited future journey information.To provide a further step to implementation, a software-in-the-loop simulation model isdeveloped. A fully dynamic model of the powertrain and the control algorithm areimplemented in AMESim-Simulink co-simulation environment. This shows smalldeterioration of the control performance by driver’s pedal action, powertrain dynamicsand limited computational precision on the controller performance.
机译:电池能量管理在改善可持续充电混合动力电动汽车的燃油经济性方面起着至关重要的作用。当前可用的控制策略通过踏板输入决策来考虑电池的充电状态(SOC)和驾驶员的要求。这种方法无法达到节省燃油或维持适当SOC水平的最佳性能,尤其是在极端驾驶条件或丘陵地形下运行时。本文的目的是利用即将出现的交通状况和道路高程来开发一种控制算法,该算法可以从导航系统中获取。这将使控制器能够预测再生充电的潜力,以捕获免费的能量,并有意识地消耗电池能量,以协助发动机满足高功率需求。这项研究的出发点是通过对车辆进行分析来对小型运动型多功能车进行建模目前在市场上有售。分析结果用于建立通用的轻度混合动力总成模型,随后对其进行检查以比较控制器的性能。用配备有火花点火直接喷射发动机和无级变速器的常规动力总成来建立基线。提出了带有集成的起动机交流发电机和传统的基于规则的控制策略的混合动力汽车。解释了四个标准驾驶循环中的参数优化,然后进行了详细的能量流分析。动态编程(DP)提出了另一个潜在的改进,这显示了预测控制的好处。基于这些结果,介绍了一种使用模糊逻辑的预测控制算法。控制器设计的主要工具是带有减法聚类的DP,基于自适应网络的模糊推理系统和实验设计。使用准静态后向仿真模型,将控制器的性能与瞬时控制和DP的结果进行比较。重点是在旅途结束时特别是在恶劣的驾驶条件和崎a不平的道路上,节油和SOC控制。在长途旅行和丘陵地区,该控制器显示出改善燃油经济性和严格的SOC控制的良好潜力。 DP的燃油经济性改善和SOC校正已接近最佳解决方案,尤其是在陡峭道路上的长途旅行中,基线控制器和DP之间存在较大差距。但是,短途旅行和平坦道路几乎没有好处。这是由于轻度混合动力总成的改进余量低以及未来的出行信息有限而引起的。为了提供进一步的实施步骤,开发了一种软件在环仿真模型。在AMESim-Simulink协同仿真环境中实现了动力总成的全动态模型和控制算法。这表明驾驶员的踏板动作,动力总成动力学特性以及控制性能的有限计算精度会降低控制性能。

著录项

  • 作者

    Cho B;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号