首页> 外文OA文献 >Modelling of Dynamic Behaviour of Orthotropic Metals Including Damage and Failure
【2h】

Modelling of Dynamic Behaviour of Orthotropic Metals Including Damage and Failure

机译:正交各向异性金属动力学行为的建模,包括损伤和破坏

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A physically based material model for metals, with elastic plastic and damage/failure orthotropy is proposed in this paper. The model is defined within the frameworks of irreversible thermodynamics and configurational continuum mechanics and integrated in the isoclinic configuration. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Klepaczko (Klepaczko, 1990) was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model (Follansbee and Kocks, 1988; Chen and Gray, 1996; Goto et al., 2000; Gray et al., 1999; Chen et al., 1998) which was used to control evolution of flow stress during plastic deformation. In addition the constitutive model is coupled with a shock equation of state which allows for modelling of shock wave propagation in the material. The new model was implemented in DYNA3D and our in-house non-linear transient SPH code, MCM (Meshless Continuum Mechanics). Parameters for the new constitutive model for AA7010 (a polycrystalline aluminium alloy, whose orthotropy is a consequence of grain morphology), were derived on the basis of the tensile tests and Taylor anvil tests. The tensile tests were performed for the range of temperatures between 343.15K and 413.15K, and strain rates between and . The new model was validated in two stages. The first stage comprised a series of single element tests design to separately validate elasticity, plasticity and damage related parts of the model. The second stage comprised a series of numerical simulations of Taylor anvil and plate impact tests for AA7010 and comparison of the numerical results with the experimental data. The numerical results illustrate the ability of the new model to predict experimentally observed behaviour.
机译:本文提出了一种基于物理的金属材料模型,该模型具有弹性塑性和损伤/破坏正交性。该模型在不可逆热力学和连续结构力学的框架内定义,并集成在等斜构型中。变形梯度的乘法分解的使用使该模型适用于任意塑性变形和损伤变形。考虑到破坏的物理机制,最初由Klepaczko(Klepaczko,1990)提出的热活化损伤的概念被用作新的损伤演化模型的基础。这使得拟议的破坏/破坏模型与机械阈值强度(MTS)模型兼容(Follansbee和Kocks,1988; Chen和Gray,1996; Goto等人,2000; Gray等人,1999; Chen等人, (1998年),用于控制塑性变形过程中流动应力的演变。另外,本构模型与状态激波方程耦合,该状态方程允许对材料中的激波传播进行建模。新模型在DYNA3D和我们内部的非线性瞬态SPH代码MCM(无网格连续力学)中实现。在拉伸试验和泰勒砧试验的基础上,得出了用于AA7010(一种多晶铝合金,其正交性是晶粒形态的结果)的新本构模型的参数。在343.15K和413.15K之间的温度范围内以及到的应变率之间进行了拉伸试验。新模型分两个阶段进行了验证。第一阶段包括一系列的单元素测试设计,以分别验证模型的弹性,可塑性和损坏相关部分。第二阶段包括针对AA7010的泰勒砧和平板冲击试验的一系列数值模拟,并将数值结果与实验数据进行比较。数值结果说明了新模型预测实验观察到的行为的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号