首页> 外文OA文献 >Process monitoring and adaptive quality control for robotic gas metal arc welding
【2h】

Process monitoring and adaptive quality control for robotic gas metal arc welding

机译:机器人气体保护金属电弧焊的过程监控和自适应质量控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this research was to develop an adaptive quality control strategy for roboticgas metal arc welding of thin steel sheets. Statistical methods were used to monitor andcontrol the quality of welds produced.The quality of welds cannot be directly measured during welding. It can however beestimated by correlating weld quality parameters to relevant process variables. It wasfound sufficient to do this using welding current and voltage transient signals only.The strategy developed was problem solving oriented with emphasis on qualityassurance, defect detection and prevention. It was based on simple algorithms developedusing multiple regression models, fuzzy regression models and subjective rules derivedfrom experimental trials.The resulting algorithms were used tocontrol weld bead geometry;prevent inadequate penetration;detect and control metal transfer;assess welding arc stability;optimise welding procedure;prevent undercut;detect joint geometry variations.Modelling was an integral part of this work, and as a feasibility study, some of themodels developed for process control were remodelled using "Backpropagation"Artificial Neural Networks. The neural network models were found to offer nosignificant improvement over regression models when used for estimating weld qualityfrom welding parameters and predicting optimum welding parameter.As a result of the work a multilevel quality control strategy involving preweld parameteroptimisation, on line control and post weld analysis was developed and demonstratedin a production environment. The main emphasis of the work carried out was ondeveloping control models and means of monitoring the process on-line; theimplementation of robotic control was outside the scope of this work. The controlstrategy proposed was however validated by using post weld analysis and simulation insoftware.
机译:这项研究的目的是为薄钢板的机器人气金属电弧焊开发一种自适应的质量控制策略。统计方法被用来监视和控制所生产的焊缝的质量。在焊接过程中不能直接测量焊缝的质量。但是,可以通过将焊接质量参数与相关的过程变量相关联来进行估算。发现仅使用焊接电流和电压瞬态信号就足以做到这一点。制定的策略是解决问题,着重于质量保证,缺陷检测和预防。它是基于使用多个回归模型,模糊回归模型和实验性试验得出的主观规则而开发的简单算法所得到的算法,用于控制焊缝几何形状;防止熔深不足;检测和控制金属转移;评估焊接电弧稳定性;优化焊接程序;建模是这项工作的组成部分,并且作为可行性研究,使用“反向传播”人工神经网络对一些为过程控制而开发的模型进行了建模。当用于从焊接参数估算焊接质量和预测最佳焊接参数的焊接质量时,发现神经网络模型没有显着改善。作为这项工作的结果,采用了涉及焊接前参数优化,在线控制和焊接后分析的多级质量控制策略。在生产环境中开发和演示。所开展工作的主要重点是开发控制模型和在线监控过程的方法。机器人控制的实现超出了这项工作的范围。但是,建议的控制策略通过使用焊后分析和仿真软件进行了验证。

著录项

  • 作者

    Ogunbiyi T. E. B.;

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号