首页> 外文OA文献 >Evaluation and optimisation of environmentally friendly aircraft propulsion systems
【2h】

Evaluation and optimisation of environmentally friendly aircraft propulsion systems

机译:评估和优化环保型飞机推进系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this globalised world where the efficient transportation of people and goodsgreatly contributes to the development of a given region or country, the aviationindustry has found the ideal conditions for its development, thereby becoming in one ofthe fastest growing economic sectors during the last decades. The continuing growth inair traffic and the increasing public awareness about the anthropogenic contribution toglobal warming have meant that environmental issues associated with aircraftoperations are currently one of the most critical aspects of commercial aviation. Severalalternatives for reducing the environmental impact of aircraft operations have beenproposed over the years, and they broadly comprise reductions in the number of aircraftoperations, changes in the type of aircraft, and changes in the aircraft operational rulesand procedures. However, since the passenger traffic is expected to increase over thenext years, only the last two options seem to be the most feasible solutions to alleviatethe problem. Accordingly, the general aim of this research work is to develop amethodology to evaluate and quantify aircraft/engines design trade-offs originated as aconsequence of addressing conflicting objectives such as low environmental impact andlow operating costs. More specifically, it is an objective of this work to evaluate andoptimise both aircraft flight trajectories and aircraft engine cycles taking into accountmultidisciplinary aspects such as performance, gaseous emissions, and economics.In order to accomplish the objectives proposed in this project, a methodology foroptimising aircraft trajectories has been initially devised. A suitable optimiser with alibrary of optimisation algorithms, Polyphemus, has been then developed and/oradapted. Computational models simulating different disciplines such as aircraftperformance, engine performance, and pollutants formation, have been selected ordeveloped as necessary. Finally, several evaluation and optimisation processes aimingto determine optimum and ‘greener’ aircraft trajectories and engine cycles have beencarried out and their main results summarised. In particular, an advanced, innovativegaseous emissions prediction model that allows the reliable calculation of emissions trends from current and potential future aircraft gas turbine combustors has beendeveloped. When applied to a conventional combustor, the results showed that ingeneral the emission trends observed in practice were sufficiently well reproduced, andin a computationally efficient manner for its subsequent incorporation in optimisationprocesses. For performing the processes of optimisation of aircraft trajectories andengine cycles, an optimiser (Polyphemus) has also been developed and/or adapted inthis work. Generally the results obtained using Polyphemus and other commerciallyavailable optimisation algorithms presented a satisfactory level of agreement (averagediscrepancies of about 2%). It is then concluded that the development of Polyphemus isproceeding in the correct direction and should continue in order to improve itscapabilities for identifying and efficiently computing optimum and ‘greener’ aircrafttrajectories and engine cycles, which help to minimise the environmental impact ofcommercial aircraft operations.The main contributions of this work to knowledge broadly comprise thefollowing: (i) development of an environmental-based methodology for carrying outboth aircraft trajectory optimisation processes, and engine cycle optimisation-type ones;(ii) development of both an advanced, innovative gas turbine emissions predictionmodel, and an optimiser (Polyphemus) suitable to be integrated into multi-disciplinaryoptimisation frameworks; and (iii) determination and assessment of optimum and‘greener’ aircraft trajectories and aircraft engine cycles using a multi-disciplinaryoptimisation tool, which included the computational tools developed in this work. Basedon the results obtained from the different evaluation and optimisation processes carriedout in this research project, it is concluded that there is indeed a feasible route to reducethe environmental impact of commercial aviation through the introduction of changes inthe aircraft operational rules and procedures and/or in the aircraft/engine configurations.The magnitude of these reductions needs to be determined yet through carefulconsideration of more realistic aircraft trajectories and the use of higher fidelitycomputational models. For this purpose, the computations will eventually need to beextended to the entire fleet of aircraft, and they will also need to include differentoperational scenarios involving partial replacements of old aircraft with newenvironmentally friendly ones.
机译:在这个全球化的世界中,有效的人员和货物运输极大地促进了特定地区或国家的发展,航空业已经找到了发展的理想条件,从而成为过去几十年来发展最快的经济部门之一。空中交通的持续增长以及公众对人为因素对全球变暖的认识的提高,意味着与飞机运行相关的环境问题目前是商业航空业最关键的方面之一。这些年来,已经提出了几种减少飞机运行对环境的影响的替代方案,它们广泛地包括减少飞机运行的数量,改变飞机的类型以及改变飞机运行规则和程序。但是,由于预计未来几年客运量将增加,因此只有后两种选择似乎是缓解该问题的最可行解决方案。因此,这项研究工作的总体目标是开发一种方法论,以评估和量化由于解决冲突目标(如低环境影响和低运营成本)而导致的飞机/发动机设计折衷。更具体地说,这项工作的目标是考虑并综合性能,气体排放和经济性等多学科方面,评估和优化飞机的飞行轨迹和飞机发动机循环。为了实现本项目中提出的目标,一种优化飞机的方法学最初已经设计了轨迹。然后已经开发和/或适应了带有优化算法库的适当优化器Polyphemus。已根据需要选择或开发了模拟不同学科(例如飞机性能,发动机性能和污染物形成)的计算模型。最后,已经进行了一些旨在确定最佳和“更环保”的飞机轨迹和发动机循环的评估和优化过程,并对它们的主要结果进行了总结。特别地,已经开发了先进的创新性气体排放预测模型,该模型能够可靠地计算当前和潜在的未来飞机燃气轮机燃烧器的排放趋势。当应用于常规燃烧器时,结果表明,在实践中观察到的一般排放趋势得到了很好的再现,并且以一种计算有效的方式将其随后纳入优化过程。为了执行飞机轨迹和发动机循环的优化过程,在这项工作中还开发和/或优化了一个优化器(复飞鸟)。通常,使用Polyphemus和其他商用优化算法获得的结果显示出令人满意的一致性水平(平均差异约为2%)。然后得出的结论是,Polyphemus的开发朝着正确的方向发展,并且应该继续进行下去,以提高其识别和有效计算最佳和``绿色''飞机轨迹和引擎周期的能力,从而有助于最大程度地减少商业飞机运营对环境的影响。这项工作对知识的贡献主要包括以下几方面:(i)开发基于环境的方法来执行飞机轨迹优化过程和发动机循环优化类型的过程;(ii)开发先进的创新型燃气轮机排放预测模型,以及适合集成到多学科优化框架中的优化器(Polyphemus); (iii)使用多学科优化工具确定和评估最佳和“更绿色”的飞机轨迹和飞机发动机循环,其中包括这项工作中开发的计算工具。根据从本研究项目中进行的不同评估和优化过程获得的结果,可以得出结论,确实确实存在一条通过引入飞机运行规则和程序以及/或航空器的更改来减少商业航空对环境的影响的可行途径。飞机/发动机的配置。需要通过仔细考虑更真实的飞机轨迹和使用更高保真度的计算模型来确定这些减少的幅度。为此,计算将最终需要扩展到整个飞机机队,并且它们还需要包括不同的操作场景,其中包括用新的环境友好型飞机部分替换旧飞机。

著录项

  • 作者

    Celis Cesar;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号