首页> 外文OA文献 >Manoeuvre Planning Architecture for the Optimisation of Spacecraft Formation Flying Reconfiguration Manoeuvres
【2h】

Manoeuvre Planning Architecture for the Optimisation of Spacecraft Formation Flying Reconfiguration Manoeuvres

机译:优化航天器编队飞行重组机动的机动计划架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Formation flying of multiple spacecraft collaborating toward the same goal is fastbecoming a reality for space mission designers. Often the missions require the spacecraft toperform translational manoeuvres relative to each other to achieve some mission objective.These manoeuvres need to be planned to ensure the safety of the spacecraft in the formationand to optimise fuel management throughout the fleet. In addition to these requirements is itdesirable for this manoeuvre planning to occur autonomously within the fleet to reduceoperations cost and provide greater planning flexibility for the mission. One such mission thatwould benefit from this type of manoeuvre planning is the European Space Agency’sDARWIN mission, designed to search for extra-solar Earth-like planets using separatedspacecraft interferometry.This thesis presents a Manoeuvre Planning Architecture for the DARWIN mission. Thedesign of the Architecture involves identifying and conceptualising all factors affecting theexecution of formation flying manoeuvres at the Sun/Earth libration point L2. A systematictrade-off analysis of these factors is performed and results in a modularised ManoeuvrePlanning Architecture for the optimisation of formation flying reconfiguration manoeuvres.The Architecture provides a means for DARWIN to autonomously plan manoeuvres duringthe reconfiguration mode of the mission. The Architecture consists of a Science OperationsModule, a Position Assignment Module, a Trajectory Design Module and a Station-keepingModule that represents a multiple multi-variable optimisation approach to the formationflying manoeuvre planning problem. The manoeuvres are planned to incorporate targetselection for maximum science returns, collision avoidance, thruster plume avoidance,manoeuvre duration minimisation and manoeuvre fuel management (including fuelconsumption minimisation and formation fuel balancing). With many customisable variablesthe Architecture can be tuned to give the best performance throughout the mission duration.The implementation of the Architecture highlights the importance of planning formationflying reconfiguration manoeuvres. When compared with a benchmark manoeuvre planningstrategy the Architecture demonstrates a performance increase of 27% for manoeuvrescheduling and fuel savings of 40% over a fifty target observation tour.The Architecture designed in this thesis contributes to the field of spacecraft formationflying analysis on various levels. First, the manoeuvre planning is designed at the missionlevel with considerations for mission operations and station-keeping included in the design.Secondly, the requirements analysis and implementation of Science Operation Modulerepresent a unique insight into the complexity of observation scheduling for exo-planetanalysis missions and presents a robust method for autonomously optimising that scheduling.Thirdly, in-depth analyses are performed on DARWIN-based modifications of existingmanoeuvre optimisation strategies identifying their strengths and weaknesses and ways toimprove them. Finally, though not implemented in this thesis, the design of a Station-keepingModule is provided to add station-keeping optimisation functionality to the Architecture.
机译:多个飞行器的编队飞行朝着同一目标的协作正在迅速成为太空任务设计者的现实。飞行任务通常需要航天器相对于彼此执行平移操纵以实现某些飞行目标。这些操纵需要进行计划,以确保飞行器在编队中的安全并优化整个舰队的燃料管理。除了这些要求之外,还希望这种机动计划在机队内自主进行,以减少运营成本并为任务提供更大的计划灵活性。欧洲航天局的DARWIN任务就是其中一种将从这种机动计划中受益的任务,该任务旨在使用分离的航天器干涉术来搜索类似太阳系的地球行星。本文提出了DARWIN机动计划体系结构。该体系结构的设计涉及识别和概念化影响在太阳/地球解放点L2执行编队飞行机动的所有因素。对这些因素进行了系统的权衡分析,并得出了模块化的机动计划体系结构,以优化编队飞行的重新配置演习。该体系结构为DARWIN提供了一种在任务的重新配置模式下自主计划演习的手段。该体系结构由一个科学操作模块,一个位置分配模块,一个轨迹设计模块和一个站位保持模块组成,它们代表了编队飞行机动计划问题的多个多变量优化方法。计划将机动性纳入目标选择,以实现最大的科学回报,避免碰撞,避免推进器羽流,最小化操纵持续时间和机动燃料管理(包括最小化燃料消耗和地层燃料平衡)。借助许多可自定义的变量,可以调整体系结构以在整个任务持续时间内提供最佳性能。体系结构的实施突显了规划编队飞行重新配置动作的重要性。与基准机动计划策略相比,该架构在50次目标巡视中显示出机动调度性能提高了27%,节油40%。本文设计的架构在各个层面上都对航天器编队飞行分析领域做出了贡献。首先,在任务级别上设计机动计划,并在设计中考虑了任务操作和站位保持情况;其次,需求分析和科学操作模块的实施代表了对系外平面分析任务的观测计划复杂性的独特见解,第三,对基于DARWIN的现有机动优化策略的修改进行了深入分析,确定了它们的优缺点和改进方法。最后,尽管本文未实现,但仍提供了站保持模块的设计,以向该体系结构添加站保持优化功能。

著录项

  • 作者

    Burgon Ross;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号