首页> 外文OA文献 >Parity and generalised Büchi automata - determinisation and complementation
【2h】

Parity and generalised Büchi automata - determinisation and complementation

机译:奇偶校验和广义Büchi自动机-确定性和互补性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, we study the problems of determinisation and complementation of finite automata on infinite words. We focus on two classes of automata that occur naturally: generalised Büchi automata and nondeterministic parity automata. Generalised Büchi and parity automata occur naturally in model-checking, realisability checking and synthesis procedures. We first review a tight determinisation procedure for Büchi automata, which uses a simplification of Safra trees called history trees. As Büchi automata are special types of both generalised Büchi and parity automata, we adjust the data structure to arrive at suitably tight determinisation constructions for both generalised Büchi and parity automata. As the parity condition describes combinations of Büchi and CoBüchi conditions, instead of immediately modifying the data structure to handle parity automata, we arrive at a suitable data structure by first looking at a special case, Rabin automata with one accepting pair. One pair Rabin automata correspond to parity automata with three priorities and serve as a starting point to modify the structures that result from Büchi determinisation: we then nest these structures to reflect the standard parity condition and describe a direct determinisation construction. The generalised Büchi condition is characterised by an accepting family with 'k' accepting sets. It is easy to extend classic determinisation constructions to handle generalised Büchi automata by incorporating the degeneralization algorithm in the determinisation construction. We extend the tight Büchi construction to do exactly this. Our determinisation constructions go to deterministic Rabin automata. It is known that one can determinise to the more convenient parity condition by incorporating the standard Latest Appearance Record construction in the determinisation procedure. We determinise to parity automata using this technique. We prove lower bounds on these constructions. In the case of determinisation to Rabin automata, our constructions are tight to the state. In the case of determinisation to parity, there is a constant factor ≤ 1.5 between upper and lower bounds reducing to optimal(to the state) in the case of Büchi and 1-pair Rabin. We also reconnect tight determinisation and complementation and provide constructions for complementing generalised Büchi and parity automata by starting withour data structure for determinisation. We introduce suitable data structures for the complementation procedures based on the data structure used for determinisation. We prove lower bounds for both constructions that are tight upto an O(n) factor where 'n' is the number of states of the nondeterministic automaton that is complemented.
机译:本文研究了无限词在有限自动机上的确定性和补充性问题。我们关注自然发生的两类自动机:广义Büchi自动机和不确定性奇偶自动机。广义的Büchi和奇偶自动机自然发生在模型检查,可实现性检查和综合过程中。我们首先回顾一下Büchi自动机的严格确定程序,该程序使用了称为历史树的Safra树的简化形式。由于Büchi自动机是广义Büchi和奇偶校验自动机的特殊类型,因此我们调整数据结构以针对广义Büchi和奇偶校验自动机得出适当的紧致确定构造。由于奇偶校验条件描述了Büchi和CoBüchi条件的组合,因此,我们无需立即修改数据结构以处理奇偶校验自动机,而是先查看一个特殊情况,即带有一对接受对的Rabin自动机,以找到合适的数据结构。一对Rabin自动机对应于具有三个优先级的奇偶校验自动机,并且作为修改由Büchi确定性产生的结构的起点:然后,我们嵌套这些结构以反映标准奇偶校验条件并描述直接确定性构造。广义Büchi条件的特征在于一个具有“ k”个接受集的接受家庭。通过将去一般化算法合并到确定化构造中,可以轻松地扩展经典确定化构造以处理广义Büchi自动机。我们扩展了紧密的Büchi结构来做到这一点。我们的确定性构造用于确定性Rabin自动机。众所周知,可以通过将标准的“最新外观记录”构造合并到确定过程中来确定更方便的奇偶校验条件。我们使用这种技术确定奇偶校验自动机。我们证明了这些构造的下界。在确定为Rabin自动机的情况下,我们的结构与状态紧密相关。在确定为平价的情况下,在上边界和下边界之间有一个恒定因子≤1.5,对于布奇和1对Rabin而言,该常数减小到最佳状态。我们还重新连接紧密的确定性和互补性,并通过开始进行确定性的数据结构来提供对广义Büchi和奇偶自动机的补充。我们基于用于确定的数据结构为补充程序介绍合适的数据结构。我们证明这两种结构的下界都严格到O(n)因子,其中“ n”是互补的不确定性自动机的状态数。

著录项

  • 作者

    Methrayil Varghese PT;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号