首页> 外文OA文献 >Boundary Value Problems in Some Ramified Domains with a Fractal Boundary: Analysis and Numerical Methods. Part II: Non homogeneous Neumann Problems.
【2h】

Boundary Value Problems in Some Ramified Domains with a Fractal Boundary: Analysis and Numerical Methods. Part II: Non homogeneous Neumann Problems.

机译:具有分形边界的某些分枝域中的边值问题:分析和数值方法。第二部分:非齐次诺伊曼问题。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is devoted to numerical methods for solving Poisson problems in self-similar ramified domains of $R^2$ with a fractal boundary. It is proved that a sequence of solutions to some nonhomogeneous Neumann problems posed on domains obtained by interrupting the fractal construction after a finite number of generations, converges to the solution of a Neumann problem posed in the whole domain. To define the Neumann problem on the infinitely ramified domain and for proving the above mentioned convergence, extension and trace results are given. Then, a method for computing the solution is proposed an analyzed. In particular, it is shown that the small scales of the Neumann data are damped exponentially fast away from the boundary. A self similar finite element method is developed and tested.
机译:本文致力于用数值方法求解带分形边界的$ R ^ 2 $自相似分支域中的泊松问题。证明了通过有限次世代后中断分形构造而获得的某些非齐次Neumann问题的解的序列收敛于整个领域的Neumann问题的解。为了在无限分支域上定义Neumann问题,并证明上述收敛,扩展和跟踪结果。然后,提出了一种计算解决方案的方法。特别地,显示出小范围的Neumann数据远离边界以指数方式快速衰减。自相似的有限元方法被开发和测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号