首页> 外文OA文献 >Maximum power point tracking control of the permanent magnet synchronous generator based wind turbine
【2h】

Maximum power point tracking control of the permanent magnet synchronous generator based wind turbine

机译:基于永磁同步发电机的风力发电机的最大功率点跟踪控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind power generation is a promising renewable energy source. The reduced cost of electricity supplied from wind power plants may be attributed to good control strategies such as maximum power point tracking. The control algorithm for maximum power generation is analysed in this thesis. The control algorithm is proposed by regulating the d-q axis voltages of electrical machines in order to control machine torque and rotational speed that allows wind turbines to always extract maximum power from the wind energy source. A conventional way to control the electrical machine is by using vector control together with PI controllers to regulate voltages. This control method is mature and robust enough for electrical machine control. However, vector control may have difficulties in handling system interconnected nonlinearity and time varying wind power input variables. To improve the control strategy and provide controllers with a wider range of applicability, feedback linearization and nonlinear adaptive control algorithms are investigated. Feedback linearization control cancels out all the nonlinearities of q-axis items to expand operational range and develop interaction between the d-axis and q-axis dynamics for machine torque. For nonlinear adaptive control, the original nonlinear multi-input multi-output system is divided into inter-related subsystems and the system nonlinear items and uncertainties are estimated in order to cancel out the existing nonlinearities. Wind power generation maximum power point tracking is accomplished by using conventional vector control, feedback linearization control and nonlinear adaptive control. Practically, due to the small range of control capability, the gain-scheduled conventional control strategy requires a set of control parameters in order to match the different input wind speed. And a mapping technique which relies on the wind speed and current sensors is essential for this control strategy. The feedback linearization control strategy proposed in the report gives global trajectory tracking, so only one set of controller parameter is able to handle all the different wind speed inputs. However, the feedback linearization control still requires some of the machine operational parameters such as rotor speed, stator winding current, etc. Therefore, the nonlinear adaptive control strategy is proposed which uses the estimated machine operational parameters instead of actual parameters. This would further improve the controller capability and robustness. The simulation in this thesis have shown that the proposed nonlinear control strategies are also able to conduct wind turbine maximum power point tracking compare to conventional gain-scheduled control strategy. In the real case, if the proposed nonlinear control strategies can be successfully implemented for wind turbine, it will reduce the number of sensors and the corresponding devices used and thus reduce the cost and enhance the wind turbine robustness. A magnetic equivalent circuit model of the permanent magnet synchronous machine is developed to analyse the electrical machine performance consider magnetic saturation. This model is usually used for electrical machine design and optimization purpose. It has a significant advantage in computational speed compared to another popular tool, finite element method. The magnetic equivalent circuit model may be used to calculate electrical machine properties such as electromotive force and flux linkages for machine control. The flux worked out by using this model is compared with finite element method analysis and the result shows that this model is five times faster in calculations and gives the percentage error less than ten. Currently, due to the uncertainties of magnetic saturated machines, the electrical machine controller only handles the linear region of machine power speed curve. If the proposed model has the calculation speed fast enough to give real time machine operational parameters, the uncertain parameters can be obtained even when the machine encounters magnetic saturation. It has to be emphasized that the nonlinearities in the magnetic equivalent circuit model is due to the magnetic material, while the nonlinearities in machine controller are due to the summation or product of multiple state variables, they are essentially different.
机译:风力发电是一种有前途的可再生能源。从风力发电厂供应的电力成本降低可能​​归因于良好的控制策略,例如最大功率点跟踪。本文分析了最大发电的控制算法。通过调节电机的d-q轴电压来提出控制算法,以控制电机转矩和转速,从而使风力涡轮机始终从风能源中提取最大功率。控制电机的常规方法是将矢量控制与PI控制器一起使用以调节电压。这种控制方法已经成熟并且足够鲁棒,可用于电机控制。但是,矢量控制在处理系统互连的非线性和随时间变化的风能输入变量时可能会遇到困难。为了改善控制策略并为控制器提供更大的适用范围,研究了反馈线性化和非线性自适应控制算法。反馈线性化控制消除了q轴项的所有非线性,从而扩大了操作范围,并发展了d轴和q轴动力学之间的相互作用以实现机器转矩。对于非线性自适应控制,将原始的非线性多输入多输出系统分为相互关联的子系统,并估计系统的非线性项和不确定性,以消除现有的非线性。风力发电最大功率点跟踪是通过使用常规矢量控制,反馈线性化控制和非线性自适应控制来完成的。实际上,由于控制能力的范围较小,因此增益预定的常规控制策略需要一组控制参数,以匹配不同的输入风速。依赖于风速和电流传感器的映射技术对该控制策略至关重要。报告中提出的反馈线性化控制策略提供了全局轨迹跟踪,因此只有一组控制器参数能够处理所有不同的风速输入。然而,反馈线性化控制仍然需要一些电机运行参数,例如转子速度,定子绕组电流等。因此,提出了非线性自适应控制策略,该策略使用估算的电机运行参数代替实际参数。这将进一步提高控制器的能力和鲁棒性。仿真结果表明,与常规的增益调度控制策略相比,所提出的非线性控制策略还能够进行风力发电机的最大功率点跟踪。在实际情况下,如果所提出的非线性控制策略能够成功地应用于风力涡轮机,它将减少传感器的数量和所使用的相应设备的数量,从而降低成本并增强风力涡轮机的坚固性。建立了永磁同步电机的等效磁路模型,分析了考虑磁饱和的电机性能。该模型通常用于电机设计和优化目的。与另一种流行的工具有限元方法相比,它在计算速度上具有显着的优势。磁等效电路模型可用于计算电机属性,例如电动势和用于电机控制的磁链。将使用该模型计算出的通量与有限元方法分析进行比较,结果表明该模型的计算速度快了五倍,并且百分比误差小于十。当前,由于磁饱和电机的不确定性,电机控制器仅处理电机功率速度曲线的线性区域。如果所提出的模型具有足够快的计算速度以提供实时的机器运行参数,则即使机器遇到磁饱和也可以获得不确定的参数。必须强调的是,磁等效电路模型中的非线性是由于磁性材料引起的,而电机控制器中的非线性是由于多个状态变量的总和或乘积引起的,它们本质上是不同的。

著录项

  • 作者

    Zhang M;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号