首页> 外文OA文献 >Construction et analyse numérique de schéma asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs
【2h】

Construction et analyse numérique de schéma asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs

机译:非结构网格上渐近保存格式的构造和数值分析。应用于线性运输和Friedrichs系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The transport equation in highly scattering regimes has a limit in which the dominant behavior is given by the solution of a diffusion equation. The angular discretizations like the discrete ordinate method Sn or the truncated spherical harmonic expansion Pn have the same property. For such systems it would be interesting to construct finite volume schemes on unstructured meshes which have the same dominant behavior even if the mesh is coarse (these schemes are called asymptotic preserving schemes). Indeed these models can be coupled with Lagrangian hydrodynamics codes which generate very distorted meshes. To begin we consider the lowest order angular discretization of the transport equation that is the P1 model also called the hyperbolic heat equation. After an introduction of 1D methods, we start by modify the classical edge scheme with the Jin-Levermore procedure, this scheme is not valid in the diffusion regime because the limit diffusion scheme (Two Points Flux Approximation) is not consistent on unstructured meshes. To solve this problem we propose news schemes valid on unstructured meshes. These methods are based on the nodal scheme (GLACE scheme) designed for the acoustic and dynamic gas problems, coupled with the Jin-Levermore procedure. We obtain two schemes valid on unstructured meshes which give in 1D on the Jin-Levermore scheme and the Gosse-Toscani scheme. The limit diffusion scheme obtained is a new nodal scheme. Convergence and stability proofs have been exhibited for these schemes. In a second time, these methods have been extended to higher order angular discretisation like the Pn and Sn models using a splitting strategy between the lowest order angular discretization and the higher order angular discretization. To finish we will propose to study the discretization of the absorption/emision problem in radiative transfer and a non-linear moment model called M1 model. To treat the M1 model we propose to use a formulation like a dynamic gas system coupled with a Lagrange+remap nodal scheme and the Jin-Levermore method. The numerical method obtained preserve the asymptotic limit, the maximum principle, and the entropy inequality on unstructured meshes.
机译:在高度散射状态下的传输方程具有一个极限,在该极限中,主导行为由扩散方程的解给出。像离散纵坐标方法Sn或截断的球谐展开Pn这样的角离散具有相同的属性。对于这样的系统,有趣的是在具有相同主导行为的非结构化网格上构造有限体积方案,即使该网格是粗糙的(这些方案称为渐近保存方案)。实际上,这些模型可以与拉格朗日流体力学代码结合使用,后者会生成非常扭曲的网格。首先,我们考虑运输方程的最低阶角离散化,即P1模型,也称为双曲线热方程。引入一维方法后,我们首先使用Jin-Levermore程序修改经典边缘方案,该方案在扩散方案中无效,因为极限扩散方案(两点通量近似)在非结构化网格上不一致。为了解决这个问题,我们提出了在非结构化网格上有效的新闻方案。这些方法基于针对声学和动态气体问题而设计的节点方案(GLACE方案)以及Jin-Levermore程序。我们获得了两种在非结构网格上有效的方案,它们在Jin-Levermore方案和Gosse-Toscani方案中给出了1D的结果。获得的极限扩散方案是一种新的节点方案。这些方案已显示出收敛性和稳定性证明。第二次,这些方法已扩展到更高阶的角度离散化,例如使用最低阶角度离散化和高阶角度离散化之间的分割策略的Pn和Sn模型。最后,我们将建议研究辐射传递中的吸收/反射问题的离散化以及一个称为M1模型的非线性矩模型。为了处理M1模型,我们建议使用类似于Lagrange + remap节点方案和Jin-Levermore方法的动态气体系统之类的公式。获得的数值方法保留了非结构网格上的渐近极限,最大原理和熵不等式。

著录项

  • 作者

    Franck Emmanuel;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号