首页> 外文OA文献 >Image Processing for Ice Parameter Identification in Ice Management
【2h】

Image Processing for Ice Parameter Identification in Ice Management

机译:冰管理中冰参数识别的图像处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various types of remotely sensed data and imaging technology will aid thedevelopment of sea-ice observation to, for instance, support estimation of iceforces critical to Dynamic Positioning (DP) operations in Arctic waters. Theuse of cameras as sensors for offshore operations in ice-covered regions willbe explored for measurements of ice statistics and ice properties, as part of asea-ice monitoring system. This thesis focuses on the algorithms for imageprocessing supporting an ice management system to provide useful ice informationto dynamic ice estimators and for decision support. The ice informationincludes ice concentration, ice types, ice floe position and floe size distribution,and other important factors in the analysis of ice-structure interaction in an icefield.The Otsu thresholding and k-means clustering methods are employed to identifythe ice from the water and to calculate ice concentration. Both methodsare effective for model-ice images. However, the k-means method is more effectivethan the Otsu method for the sea-ice images with a large amounts ofbrash ice and slush.The derivative edge detection and morphology edge detection methods areused to try to find the boundaries of the ice floes. Because of the inabilityof both methods to separate connected ice floes in the images, the watershedtransform and the gradient vector flow (GVF) snake algorithm are applied.In the watershed-based method, the grayscale sea-ice image is first convertedinto a binary image and the watershed algorithm is carried out to segment theimage. A chain code is then used to check the concavities of floe boundaries.The segmented neighboring regions that have no concave corners betweenthem are merged, and over-segmentation lines are removed automatically.This method is applicable to separate the seemingly connected floeswhose junctions are invisible or lost in the images.In the GVF snake-based method, the seeds for each ice floe are first obtainedby calculating the distance transform of the binarized image. Based on theseseeds, the snake contours with proper locations and radii are initialized, andthe GVF snakes are then evolved automatically to detect floe boundaries andseparate the connected floes. Because some holes and smaller ice pieces maybe contained inside larger floes, all the segmented ice floes are arranged inorder of increasing size after segmentation. The morphological cleaning isthen performed to the arranged ice floes in sequence to enhance their shapes,resulting in individual ice floes identification. This method is applicable toidentify non-ridged ice floes, especially in the marginal ice zone and managed ice resulting from offshore operations in sea-ice.For ice engineering, both model-scale and full-scale ice will be discussed. Inthe model-scale, the ice floes in the model-ice images are modeled as squareshapes with predefined side lengths. To adopt the GVF snake-based method formodel-ice images, three criteria are proposed to check whether it is necessaryto reinitialize the contours and segment a second time based on the size andshape of model-ice floe. In the full-scale, sea-ice images are shown to bemore difficult than the model-ice images analyzed. In addition to non-uniformillumination, shadows and impurities, which are common issues in both sea-iceand model-ice image processing, various types of ice (e.g., slush, brash, etc.),irregular floe sizes and shapes, and geometric distortion are challenges in seaiceimage processing. For sea-ice image processing, the “light ice” and “darkice” are first obtained by using the Otsu thresholding and k-means clusteringmethods. Then, the “light ice” and “dark ice” are segmented and enhancedby using the GVF snake-based method. Based on the identification result,different types of sea-ice are distinguished, and the image is divided into fourlayers: ice floes, brash pieces, slush, and water. This then makes it possibleto present a color map of the ice floes and brash pieces based on sizes. Italso makes it possible to present the corresponding ice floe size distributionhistogram.
机译:各种类型的遥感数据和影像技术将有助于海冰观测的发展,例如,支持估算对北极水域动态定位(DP)操作至关重要的冰力。作为海冰监测系统的一部分,将探索使用照相机作为冰覆盖地区海上作业的传感器,以测量冰的统计数据和冰的性质。本文重点研究支持冰管理系统的图像处理算法,以向动态冰估算器提供有用的冰信息,并为决策提供支持。冰的信息包括冰的浓度,冰的类型,浮冰的位置和浮冰的大小分布以及其他在冰场中冰结构相互作用分析中的重要因素。采用Otsu阈值和k均值聚类方法从水中识别冰并计算冰浓度。两种方法都对模型冰图像有效。然而,对于含有大量碎冰和雪泥的海冰图像,k-means方法比Otsu方法更有效。使用导数边缘检测和形态学边缘检测方法来尝试找到浮冰的边界。由于这两种方法都无法分离图像中的相连浮冰,因此应用了分水岭变换和梯度矢量流(GVF)蛇算法。在基于分水岭的方法中,首先将灰度级海冰图像转换为二进制图像,然后采用分水岭算法对图像进行分割。然后使用链式代码检查絮凝物边界的凹度,合并彼此之间没有凹角的分段相邻区域,并自动去除过度分段的线条,此方法适用于分离看似相连的絮凝物,而这些絮凝物的连接处不可见或在基于GVF蛇的方法中,首先通过计算二值化图像的距离变换来获得每个浮冰的种子。根据这些种子,初始化具有适当位置和半径的蛇形轮廓,然后自动进化GVF蛇以检测絮凝物边界并分离相连的絮凝物。由于较大的絮凝物内部可能包含一些孔和较小的冰块,因此所有分段的絮凝物在分割后按大小增大的顺序排列。然后对排列的浮冰进行形态学清洗,以增强其形状,从而进行单个浮冰的识别。该方法适用于非脊状浮冰的识别,特别是在边缘冰带和海冰中海上作业产生的受控冰的识别中。对于制冰工程,将讨论模型规模和全面规模的冰。在模型规模中,模型冰图像中的浮冰被建模为具有预定边长的正方形。为了采用基于GVF蛇的模型冰图像方法,提出了三个标准,以根据模型冰块的大小和形状检查是否需要重新初始化轮廓并进行第二次分割。在完整比例下,显示出海冰图像比所分析的模型冰图像更加困难。除了照度不均匀外,阴影和杂质(在海冰和模型冰图像处理中都是常见问题),各种类型的冰(例如,雪泥,硬毛等),不规则的絮状物大小和形状以及几何变形是seaiceimage处理中的挑战。对于海冰图像处理,首先使用Otsu阈值法和k均值聚类方法获得“浅冰”和“暗冰”。然后,使用基于GVF蛇的方法对“轻冰”和“暗冰”进行分割和增强。根据识别结果,区分出不同类型的海冰,并将图像分为四层:浮冰,bra片,雪泥和水。这样就可以根据大小显示浮冰和脆块的颜色图。这也使得可以呈现相应的浮冰尺寸分布直方图。

著录项

  • 作者

    Zhang Qin;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号