首页> 外文OA文献 >Carbon Nanomaterial-Based Wing Temperature Control System for In-Flight Anti-Icing and De-Icing of Unmanned Aerial Vehicles
【2h】

Carbon Nanomaterial-Based Wing Temperature Control System for In-Flight Anti-Icing and De-Icing of Unmanned Aerial Vehicles

机译:基于碳纳米材料的机翼机上除冰除冰翼温控制系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural changes due to ice accretion are common causes for unmanned aerial vehicle incidents in Arctic regions. For fixed wing unmanned aerial vehicles (UAVs) the leading edge of airfoil surfaces is one of the primary surfaces exposed to these changes, causing a significant reduction in aerodynamic ability, i.e. decreasing lift and manoeuvrability, and increasing drag, weight, and consequently power consumption. Managing or altogether preventing ice accretion could potentially prevent icing related UAV incidents and increase the operability of UAVs. This paper addresses the issue of structural change, caused by ice accretion, on small UAVs by integrating a power control system and an electrically conductive carbon nano material based coating for temperature control of UAV airfoil surfaces. Performance assessment is achieved through extensive laboratory experiments, where various coating layouts have been investigated in various conditions, with temperatures ranging from +25° to -25°. The experimental setup consists of an Arduino microcontroller capable of controlling power delivery to the coating through feedback from thermocouples and a humidity sensor, sensing the surface temperature of the leading edge of the UAV wing and ambient humidity, respectively. Experiments reveal that a layout, where the coating covers the entire length of an wing is preferable, with the solution being highly capable of rapidly increasing the airfoil surface temperature (de-icing) when needed, and of maintaining an approximately constant airfoil surface temperature (anti-icing) when needed, all the while keeping power and energy consumption within weight and cost constraints imposed by the small scale of the UAV. The results represents a proof of concept by using an electrically conductive coating for de-icing and anti-icing of leading edge UAV airfoils
机译:积冰引起的结构变化是北极地区无人驾驶飞机事故的常见原因。对于固定翼无人飞行器(UAV),机翼表面的前缘是暴露于这些变化的主要表面之一,从而导致空气动力学能力显着降低,即降低升力和机动性,并增加阻力,重量,从而降低功耗。管理或完全防止积冰可能潜在地防止结冰相关的无人机事件并增加无人机的可操作性。本文通过集成功率控制系统和基于碳纳米材料的导电涂层来控制无人机翼型表面温度,解决了小型无人机上由于积冰引起的结构变化问题。性能评估是通过广泛的实验室实验完成的,该实验在+ 25°至-25°的温度范围内对各种涂层布局进行了研究。实验装置由一个Arduino微控制器组成,该微控制器能够通过热电偶和湿度传感器的反馈来控制向涂层的功率传输,分别感测无人机机翼前缘的表面温度和环境湿度。实验表明,最好采用一种覆盖层覆盖机翼整个长度的布局,该解决方案能够在需要时迅速提高机翼表面温度(除冰),并保持大致恒定的机翼表面温度(防冰),在需要的同时,始终将功率和能耗保持在无人机小型化所带来的重量和成本限制之内。结果通过使用导电涂层对前沿无人机机翼进行除冰和除冰来证明概念

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号