首页> 外文OA文献 >Application-oriented microfluidic LOC devices for the detection of microorganisms, toxic chemicals and serological biomarkers
【2h】

Application-oriented microfluidic LOC devices for the detection of microorganisms, toxic chemicals and serological biomarkers

机译:面向应用的微流体LOC设备,用于检测微生物,有毒化学物质和血清学生物标志物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lab-on-a-chip (LOC) technology has advanced over the past several decades. As miniaturized multiphase multistep reactors, LOCs are suitable for the implementation of complex liquid phase reactions in the field of biomedical detection. This doctoral thesis focused on the development of new LOC devices and relevant functionalities for various application cases, including microbe detection, water-safety testing, while also presenting preliminary studies on the measurement of signal molecules in blood.The application-oriented R&D (research and development) strategy was employed in the studies on a series of biomedical LOC devices. Technological challenges, e.g. optimization of on-chip quantification NASBA (nucleic acid sequence-based amplification) protocols, system design etc. were resolved in individual cases. Based on a low-cost R&D strategy, most LOCs in this doctoral work were developed for bench-top equipment as disposable components. It is worth noting that a methodological concept is also developed and summarized in this thesis, i.e., the selection of decision support mechanisms (DSMs) for biomedical LOC devices.The DSM is the supporting mechanism generating measurable signals in the LOC, and translating them into a meaningful conclusion, which can help users to make decisions in the real application field. Namely, DSMs can enable LOC-based testing and are thus a distinguished feature of application-oriented LOC devices. The author categorized the research achievements presented in this thesis into three distinctive classes, as follows:1) Conventional DSMs commonly employed in current biomedical experimental approaches. Articles I, II and III focus on this category of DSMs. The series of LOCs in these reports were modelled on standard microtiter plates, and thus these chips are completely compatible with the microplate readers commonly utilized in biological laboratories. Article I reported the design, fabrication and validation of a disposable 43-chamber LOC device for quantitative detection of waterborne pathogens. Its principle was similar to conventional ELISA(enzyme-linked immunosorbent assay) tests for microbes, entitled X. Zhao: Application-oriented microfluidic LOC devices for the detection of microorganisms, toxic chemicals and serological biomarkers immuno-NASBA assay. A synthetic peptide and two common waterborne pathogens (Escherichia coli and rotavirus) in artificial samples were used to validate the LOC functions, which indicated that the LOC device has the potential to quantify traces of waterborne pathogens with high specificity.Article II described the development of a LOC platform for environmental investigations into aquatic microorganisms, on the basis of quantitative NASBA (Q-NASBA). The LOC system was composed of a membrane-based sampling module, a sample preparation cassette, and a 24-channel Q-NASBA chip. The DSM of the LOC was derived from the polyurethane-foam-unit (PFU) method, which has been widely used to evaluate environmental pollution in fresh water. The multifunctional system could simplify and standardize the complicated processes of microbial detection.Article III addressed the implementation of a 384-chamber microfluidic simulator with the incorporated functions of pathogen identification and antimicrobial susceptibility testing (AST) for personalizing the antibiotic treatment of urinary tract infections (UTIs). Its DSM adopted the diagnosis principle of conventional ATP bioluminescence assay (ATP-BLA) for living microbial cells.2) Unconventional DSMs for contrived LOC systems. The second class of biomedical LOCs employs tailored DSMs, which are still derived from known working principles. However, the concrete mechanisms and diagnostic criteria are arbitrary in contrived functional LOCs.Article IV investigated a bioluminescent-cell-based continuous-flow device, termed a ‘living-cell chip’, with a self defining DSM to implement real-time broad-spectrum online monitoring of water quality. The prototype integrated a T-junction droplet generator, counter-flow micro-mixers, and time-delay channels. The LOC device can mix the water sample and Vibrio fischeri cell sensors into a droplet flow, and incubate the droplets in the time-delay channels before optical detection. Its DSM relies upon the relationship between the toxicant concentration in the water sample and the relative luminescence units of the bioluminescent cells in the running droplets, which is obviously different from the conventional intermittent method of ISO11384. The proposed LOC system shows great promise for an early warning system against potential toxicant chemicals in drinking water.3) Developing prognostic/diagnosis DSMs for biomedical-database-dependent LOC systems with the aid of computational modelling. The third category relies on computational modelling within a large-scale medical/healthcare database, which is currently emerging and is not yet completely developed.Article V reported a pilot study on the design and fabrication of the LOC device for signal molecule profiling in blood.Articles VI proposed the potential roadmap and preliminary experimental approach for the construction of a human signal-molecule-profiling database (HSMPD) by the use of the former LOC device, leading to prognostic/diagnosis DSMs in the future.
机译:芯片实验室(LOC)技术在过去的几十年中得到了发展。作为小型化的多相多步反应器,LOC适用于生物医学检测领域中复杂液相反应的实施。该博士论文专注于开发新的LOC装置以及针对各种应用案例的相关功能,包括微生物检测,水安全性测试,同时还提供了对血液中信号分子的测量的初步研究。开发)策略被用于一系列生物医学LOC设备的研究中。技术挑战,例如在个别情况下,解决了片上定量NASBA(基于核酸序列的扩增)方案的优化,系统设计等问题。基于低成本的研发策略,本博士研究中的大多数LOC都是为台式设备开发的,属于一次性组件。值得注意的是,本文还提出并总结了一种方法学概念,即生物医学LOC设备的决策支持机制(DSM)的选择.DSM是在LOC中生成可测量信号并将其转换为信号的支持机制。一个有意义的结论,可以帮助用户在实际应用领域中做出决策。即,DSM可以启用基于LOC的测试,因此是面向应用程序的LOC设备的显着特征。作者将本文提出的研究成果分为三类,分别为:1)当前生物医学实验方法中常用的常规DSM。第I,II和III条专注于此类DSM。这些报告中的一系列LOC是在标准微量滴定板上建模的,因此,这些芯片与生物实验室中常用的酶标仪完全兼容。第一条报告了用于定量检测水生病原体的一次性43腔LOC设备的设计,制造和验证。其原理类似于微生物的常规ELISA(酶联免疫吸附测定)测试,名为X. Zhao:面向应用的微流LOC设备,用于检测微生物,有毒化学物质和血清学生物标志物。人工样品中使用了合成肽和两种常见的水生病原体(大肠杆菌和轮状病毒)来验证LOC功能,这表明LOC设备具有以高特异性定量痕量水生病原体的潜力。一个基于定量NASBA(Q-NASBA)的水生微生物环境调查的LOC平台。 LOC系统由基于膜的采样模块,样品制备盒和24通道Q-NASBA芯片组成。 LOC的DSM源自聚氨酯泡沫单元(PFU)方法,该方法已被广泛用于评估淡水的环境污染。多功能系统可以简化和标准化复杂的微生物检测过程。第三章介绍了一种384腔微流控模拟器的实现,该模拟器结合了病原体识别和抗菌素敏感性测试(AST)功能,可个性化抗生素治疗尿路感染( UTIs)。它的DSM采用了常规ATP生物发光测定(ATP-BLA)对活微生物细胞的诊断原理。2)非常规DSM用于人为LOC系统。第二类生物医学LOC使用量身定制的DSM,这些DSM仍然是从已知的工作原理中得出的。但是,在人为设计的功能性LOC中,具体的机制和诊断标准是任意的。第四条研究了一种基于生物发光细胞的连续流设备,称为“活细胞芯片”,该设备具有自定义的DSM,可实现实时广泛的频谱在线监测水质。该原型集成了一个T型结液滴发生器,逆流微混合器和延时通道。 LOC设备可以将水样和费氏弧菌细胞传感器混合成液滴流,并在光学检测之前在延时通道中孵育液滴。其DSM依赖于水样中毒物浓度与流动液滴中生物发光细胞的相对发光单位之间的关系,这与ISO11384的常规间歇方法明显不同。提出的LOC系统显示出对饮用水中潜在有毒化学物质的预警系统的巨大前景。3)借助计算建模,为依赖于生物医学数据库的LOC系统开发预后/诊断DSM。第三类依赖于大型医疗/保健数据库中的计算模型第五条报道了用于血液中信号分子谱分析的LOC装置的设计和制造的初步研究。第六条提出了构建人体的潜在路线图和初步实验方法。信号分子分析数据库(HSMPD)通过使用以前的LOC设备来实现,从而在将来对DSM进行预后/诊断。

著录项

  • 作者

    Xinyan Zhao;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号