首页> 外文OA文献 >Design and measurement of a CO2 refrigeration system with integrated propane subcooler at high air temperature operations
【2h】

Design and measurement of a CO2 refrigeration system with integrated propane subcooler at high air temperature operations

机译:带有集成丙烷过冷器的二氧化碳制冷系统在高温下的设计和测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

After the rediscovery of CO2 as a prominent, environmentally benign working fluid, several technological modifications for the basic CO2 refrigeration cycle has been reviewed. These have been presented as solutions to the low Coefficient of Performance experienced in high air temperature operations. This is due to the great correlation between the ambient air temperature and the enthalpy after the gas cooler in the CO2 refrigeration cycle. Economisers, mechanical subcoolers, ejectors, expanders, CO2 integrated systems, parallel and auxiliary compression for flash vapour compression and evaporative cooling are technology solutions that mainly is implemented to reduce the energy consumption and the enthalpy before throttling in the basic CO2 cycles.Cadio AS has developed a CO2 system with a secondary propane cycle for operation at higher ambient temperatures. The system has a CO2 gas cooler with integrated propane condenser and a propane subcooler that condenses the CO2. This allows subcritical operation at all ambient temperatures.A prototype unit in a production facility at Heimdal was instrumented and tested during the project thesis work. Measurement data were corrected and the optimal point for start of the propane operation was found at an ambient temperature of 23,5 C.Further, these measurement data has been compared to results from a simulation model developed using the Heat Exchanger simulation program (HXsim) and the Engineering Equation Solver (EES). Simulations showed that a propane set point corresponding to an ambient temperature of 19,4 C provides the best Coefficient of Performance.However, when the propane system is not in operation, the refrigeration capacity starts to drop significantly from an ambient temperature of 15 C.Several different modifications of the integrated condenser/gas cooler has been tested in HXsim. A minimum increase of 9 % in the Coefficient of Performance can be achieved when implementing an improved CO2 condenser design at an ambient temperature of 19C. By implementing a new propane condenser, the systems Coefficient of Performance can increase with 16,2 % at an ambient temperature of 40 C. By rising the fan speed, the performance of the system can be increased even further. When implementing the improved propane condenser, a smaller propane compressor can be applied, thus energy savings on the propane system can be achieved.Performance of the system was tested for different European capitals. The seasonal performance in Madrid was found to be 2,85 in comparison to 3,22 in Oslo. The propane system also have almost three more months of operation in Madrid than Oslo, which clarifies the importance of the set point and efficient high temperature operations.Various system modifications has been investigated and simulated in EES. The modified system that gave the best seasonal performance for the capitals with the warmest climates proved to be the mechanical subcooling system, even though the prototype system provided the best Coefficient of Performance at high ambient temperatures. The mechanical subcooling system also provided the best refrigeration capacity up to an ambient temperature of 37 C, where the prototype system competes when it comes to refrigeration capacity. The transcritical system with an internal heat exchanger had an improved refrigeration capacity of 5-6 % at high temperature operation compared to the simple transcritical system. This indicates a simple and cost-effective method for improving the refrigeration capacity of the system.
机译:在重新发现了CO2作为一种对环境无害的重要工作流体之后,已经对基本的CO2制冷循环进行了几项技术改造。这些已作为解决方案来解决在高温空气操作中遇到的低性能系数的解决方案。这是由于环境空气温度与CO2制冷循环中气体冷却器后的焓之间存在很大的相关性。节能器,机械过冷器,喷射器,膨胀器,CO2集成系统,用于闪蒸压缩和蒸发冷却的并行和辅助压缩是技术解决方案,主要用于在基本CO2循环节流之前降低能耗和焓。开发了带有辅助丙烷循环的二氧化碳系统,可在更高的环境温度下运行。该系统具有带集成丙烷冷凝器的CO2气体冷却器和冷凝CO2的丙烷过冷器。这样就可以在所有环境温度下进行亚临界运行。在项目论文工作期间,对Heimdal生产设施中的原型单元进行了仪器测试。校正了测量数据,并在环境温度为23,5 C的情况下找到了丙烷操作的最佳起点。此外,这些测量数据已与使用热交换器模拟程序(HXsim)开发的模拟模型的结果进行了比较。和工程方程求解器(EES)。仿真表明,与环境温度为19.4°C对应的丙烷设定点可提供最佳的性能系数,但是,当丙烷系统不运行时,制冷量会从环境温度15°C开始显着下降。集成冷凝器/气体冷却器的几种不同修改已在HXsim中进行了测试。在19°C的环境温度下实施改进的CO2冷凝器设计时,性能系数至少可提高9%。通过实施新的丙烷冷凝器,在40°C的环境温度下,系统的性能系数可以提高16.2%。通过提高风扇速度,可以进一步提高系统的性能。当实施改进的丙烷冷凝器时,可以使用较小的丙烷压缩机,从而可以节省丙烷系统的能源。该系统的性能在不同的欧洲首都进行了测试。马德里的季节性表现为2.85,而奥斯陆的为3.22。丙烷系统在马德里的运行时间也比奥斯陆多了近三个月,这清楚了设定点和高效高温运行的重要性。在EES中对各种系统进行了修改和仿真。即使在高环境温度下原型系统提供了最佳的性能系数,经过改造的系统也能为气候最温暖的首都提供最佳的季节性性能,这是机械过冷系统。机械过冷系统还提供了高达37°C的环境温度下的最佳制冷能力,原型系统在制冷能力方面具有竞争优势。与简单的跨临界系统相比,带有内部热交换器的跨临界系统在高温下的制冷能力提高了5-6%。这表明了一种用于提高系统制冷能力的简单且具有成本效益的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号