首页> 外文OA文献 >5.8GHz, 1W high efficiency Power Amplifier in 90nm CMOS
【2h】

5.8GHz, 1W high efficiency Power Amplifier in 90nm CMOS

机译:采用90nm CMOS的5.8GHz,1W高效功率放大器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

PREFACE This master s thesis was written as the final step towards my master s degree, and it thereby marks the ending of my time at NTNU. The master s thesis was developed due to a proposal made by Texas Instruments, under the offered supervision of Oddgeir Fikstvedt. My supervisor at NTNU was Morten Olavsbråten. This report describes the design of a power amplifier in the 90nm CMOS technology. The power amplifier is designed to deliver 1W output power at 5.8GHz with a peak efficiency of 50%. Both the class-E and the inverse class-D amplifier are described and examined, but the final choice in amplifier design is the inverse class-D amplifier. Simulation results on a realistic inverse class-D amplifier model are presented as the final outcome. Trondheim, 2009-07-16 Nina Tofte Røislien ABSTRACT Recently CMOS has been introduced as a technology for RF-front end applications. This results in higher levels of integration, which saves fabrication cost and area. The power amplifier often contributes to the highest power consumption, and the efficiency becomes very important. This master s thesis handles the design of a CMOS power amplifier at 5.8GHz. The design goals were an output power of 30dBm, a Power Added Efficiency of 50% and a gain of 25dB. The main challenge in the CMOS-technology is the low breakdown voltage. This leads to a higher current and a lower load resistance compared to traditionally used RF-technologies. This makes it harder to design a high efficiency amplifier because of more power loss in the parasitic, and a more complex matching network. Two different amplifiers were investigated, both of the switching type; the class-E amplifier and the inverse class-D amplifier (current mode). The class-E amplifier has been studied by others for this kind of use, and has an advantage because of the load network that is synthesized to give non-overlapping voltage and current, even if the device switching time is appreciable fractions of the ac cycle. One can also utilize the high output capacitance of the CMOS-transistor as part of the load network. The inverse class-D amplifier has an advantage of being differential which provides a higher voltage swing across the load, and thereby a higher load resistance and a lower current compared to the class-E. In contrast with conventional voltage-mode class-D amplifiers, the inverse class-D features zero voltage switching which eliminates the output capacitance discharge loss. This output capacitance is also utilized as part of the resonance filter in the load network. No previous work of others that uses the inverse class-D amplifier in a similar configuration (RF, CMOS) was discovered. It was found that the inverse class-D amplifier was the best suited for this application. The load resistance of the class-E amplifier became too low compared to the parasitic losses to achieve the design goals. The ground inductance was also totally destructive for the class-E waveforms because of the single-ended topology. Since the inverse class-D amplifier instantly showed much more promising behavior, no time was used trying to solve this problem. The resulting inverse class-D amplifier design has a peak efficiency of 51%, an output power of 30.04dBm. The gain is 25dB for an output power of 28dBm, but sadly it decreases below the design goal to 20.06dB at the point where Pout=30dBm and PAE=50%. ACKNOWLEDGEMENT I would like to give great thanks to Oddgeir Fikstvedt and Morten Olavsbråten for invaluable support during this time, and for making this thesis possible. I would also like to give great thanks Trond Ytterdal for his help with Cadence, and to Tore Barlindhaug for help with some fatal last minute Cadence problems.
机译:前言本硕士论文是迈向我的硕士学位的最后一步,因此标志着我在NTNU的时代已经结束。该硕士论文是根据德州仪器(TI)在Oddgeir Fikstvedt的指导下提出的建议而开发的。我在NTNU的主管是MortenOlavsbråten。该报告描述了采用90nm CMOS技术的功率放大器的设计。功率放大器旨在在5.8GHz频率下提供1W输出功率,峰值效率为50%。描述和检查了E类放大器和D类反相放大器,但放大器设计的最终选择是D类反相放大器。最终结果显示了在逼真的D类逆放大器模型上的仿真结果。特隆赫姆(Trondheim),2009年7月16日Nina TofteRøislien摘要最近,CMOS被引入作为RF前端应用的技术。这导致更高的集成度,从而节省了制造成本和面积。功率放大器经常导致最高功耗,而效率变得非常重要。本论文主要研究5.8GHz CMOS功率放大器的设计。设计目标是输出功率为30dBm,功率附加效率为50%,增益为25dB。 CMOS技术的主要挑战是低击穿电压。与传统的射频技术相比,这导致了更高的电流和更低的负载电阻。由于寄生中的更多功率损耗和更复杂的匹配网络,这使得设计高效放大器变得更加困难。研究了两种不同的放大器,均为开关类型。 E类放大器和D类反向放大器(电流模式)。 E类放大器已针对这种用途进行了其他研究,并且具有优势,因为负载网络可以合成为提供不重叠的电压和电流,即使器件的开关时间是交流周期的可观分数。人们还可以利用CMOS晶体管的高输出电容作为负载网络的一部分。逆D类放大器的优点是具有差分特性,与E类放大器相比,它在负载两端提供更高的电压摆幅,从而具有更高的负载电阻和更低的电流。与传统的电压模式D类放大器相比,反向D类具有零电压开关功能,消除了输出电容的放电损耗。该输出电容还用作负载网络中谐振滤波器的一部分。尚未发现其他人使用类似配置(RF,CMOS)的反向D类放大器的先前工作。发现反相D类放大器最适合这种应用。与寄生损耗相比,E类放大器的负载电阻变得太低,无法实现设计目标。由于单端拓扑,接地电感对于E类波形也完全具有破坏性。由于反向D类放大器立即显示出更多有希望的行为,因此没有时间花费时间来解决这个问题。最终的反向D类放大器设计的峰值效率为51%,输出功率为30.04dBm。当输出功率为28dBm时,增益为25dB,但不幸的是,在Pout = 30dBm和PAE = 50%的时候,增益降低至设计目标以下至20.06dB。致谢我要非常感谢Oddgeir Fikstvedt和MortenOlavsbråten在这段时间提供了宝贵的支持,并使本文成为可能。我也要非常感谢Trond Ytterdal对Cadence的帮助,并感谢Tore Barlindhaug在某些致命的最后一分钟Cadence问题上的帮助。

著录项

  • 作者

    Tofte Røislien Nina;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号