首页> 外文OA文献 >Application of Parallel Programming in a Automatic Detector for a Pulsed MTD Radar system: Automatic Detection and Fast Ordered Selection Algorithms
【2h】

Application of Parallel Programming in a Automatic Detector for a Pulsed MTD Radar system: Automatic Detection and Fast Ordered Selection Algorithms

机译:并行编程在脉冲MTD雷达系统自动检测器中的应用:自动检测和快速排序选择算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic CFAR Detection is to be implemented in a real time pulsed MTD radar system, used in a mar-itime application.The CFAR should be able to have good detection properties in bad weather conditions, where rough seastates, heavy downpour and high winds are expected.Sucient detection properties may be achieved using an Ordered Statistics based CFAR to generate detec-tion threshold for the MTD radar video signal.The MTD video is the coherent raw video of the signal ltered in a bandpass lter bank, separating theDoppler frequency space of the video into a number of individual Doppler channels.The Doppler frequency shift relates to a velocity, implying that every Doppler channel represents a velocityspace, so that targets and clutter may further resolved by their relative Doppler velocityCFAR algorithms are applied to all the test cells in the MTD video signal. These algorithms have to estimatea threshold that is used at discriminating real targets from clutter in all the velocity channels of the MTDvideo.A good threshold estimate is to have a low probability of false detections, and a high probability of declaringactual targets.This is to be valid in all clutter conditions, even when one or multiple targets are surrounded by non-stationary clutter and closely spaced.The Ordered Statistics algorithms involves using the k'th largest value of the test window as a mean clutterpower estimate for its corresponding test cell.The ordered statistics model makes a threshold selection based on the rank of the samples. A task withcomplexity increasing as a function of window length and k parameter.This task is to be performed on a large number of test cells in a system running real time. In a real timeradar system, all processing have to be done before the next scan becomes available.Radian AS works on developing a PC based MTD Radar system for a pulsed Doppler radar.The radar interfaces the PC through a PCI Express radar receiver card developed by Radian AS.This thesis investigates the application of parallel programming in C/C++ in order to achieve real time au-tomatic detection in a PC based MTD radar. Two means of parallel programming are considered, involvingexploitation of multi core CPU architecture as well as using a dedicated GPU as a co processor.OpenMP is an Open Source library with compiler instructions for running tasks in parallel over multiplecores in a CPU. It is easily incorporated into C/C++ code, and may be used with most multi core CPUs.nVidia has made GP-GPU computing available to the public through CUDA, selling CUDA enabled graphicscards and providing the tools as well as documentation needed for a programmer to be able to use the GPUas co processor.CUDA C integrates the SIMT abstractions of CUDA, and a programmer may write C code that is compiledand executed on the GPU.Dierent implementations of the OS-CFAR algorithm for threshold estimation are implemented using CUDAand OpenMP.The dierent implementations are evaluated and compared to each other in terms of the results gatheredfrom executing them on MTD video.The experiences drawn from this work is concluded with respect to the application of parallel programming,and further recommendations for the future of the project of making a PC based pulsed MTD Radar signalprocessor.This thesis introduces a CUDA algorithm for high throughput ordered selection using short window lengthson a large number of cells under test.An algorithm developed in C for the project assignment leading up to this thesis is enabled openMP, alongwith a C++ STL algorithm, for performing ordered statistics ranked selection on the CPU. In addition, theCUDA OS-CFAR algorithm is ported to C with openMP.The three implementations in C/C++ are compared to the CUDA C implementation.
机译:CFAR自动检测将在海上应用的实时脉冲MTD雷达系统中实现,CFAR在恶劣的天气条件下应具有良好的检测性能,恶劣的天气预计会出现恶劣的海况,倾盆大雨和强风可以使用基于有序统计的CFAR生成MTD雷达视频信号的检测阈值来实现强大的检测性能.MTD视频是在带通滤波器组中隔离的信号的相干原始视频,分隔了多普勒雷达的多普勒频率空间视频分为多个独立的多普勒通道。多普勒频移与速度有关,这意味着每个多普勒通道都代表一个速度空间,因此目标和杂波可以通过其相对的多普勒速率进一步解析。 MTD视频信号。这些算法必须估计一个阈值,该阈值用于将MTDvideo的所有速度通道中的真实目标与杂波区分开来。一个好的阈值估计应具有较低的错误检测概率和较高的声明实际目标的概率。即使在一个或多个目标被非平稳杂波包围且间隔很近的情况下,该方法也有效。有序统计算法涉及使用测试窗口的第k个最大值作为其对应测试单元的平均杂波功率估计。有序统计模型基于样本的等级进行阈值选择。复杂度随窗口长度和k参数而增加的任务。该任务将在实时运行的系统中的大量测试单元上执行。在实时雷达系统中,必须进行所有处理后才能进行下一次扫描.Radian AS致力于为脉冲多普勒雷达开发基于PC的MTD雷达系统,该雷达通过由开发的PCI Express雷达接收卡与PC相连Radian AS。本文研究了并行编程在C / C ++中的应用,以便在基于PC的MTD雷达中实现实时自动检测。考虑了两种并行编程方式,包括开发多核CPU架构以及使用专用GPU作为协处理器。OpenMP是一个开放源代码库,其中包含用于在CPU的多核上并行运行任务的编译器指令。它很容易集成到C / C ++代码中,并且可以与大多数多核CPU一起使用。nVidia已通过CUDA向公众提供GP-GPU计算,出售支持CUDA的图形卡并提供了程序员所需的工具和文档。为了能够将GPU用作协处理器,CUDA C集成了CUDA的SIMT抽象,程序员可以编写在GPU上编译和执行的C代码。使用CUDA和OpenMP实现用于阈值估计的OS-CFAR算法的不同实现根据在MTD视频上执行它们的结果,评估并比较了不同的实现。从这项工作中获得的经验总结了关于并行编程的应用,并为该项目的未来提供了进一步的建议本文介绍了一种基于CUDA的短窗口长度高吞吐量有序选择算法。 openMP与C ++ STL算法一起启用了用C语言开发的,用于完成本论文的项目分配的算法,该算法用于在CPU上执行有序的统计排名选择。此外,CUDA OS-CFAR算法已通过openMP移植到C.将C / C ++中的三种实现与CUDA C实现进行了比较。

著录项

  • 作者

    Fjeld Hans Erik;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号