首页> 外文OA文献 >Time-domain and harmonic balance turbulent Navier-Stokes analysis of wind turbine aerodynamics using a fully coupled low-speed preconditioned multigrid solver
【2h】

Time-domain and harmonic balance turbulent Navier-Stokes analysis of wind turbine aerodynamics using a fully coupled low-speed preconditioned multigrid solver

机译:使用全耦合低速预处理多网格求解器的风轮机空气动力学时域和谐波平衡湍流Navier-Stokes分析

摘要

The research work reported in this thesis stems from the development of an accurate and computationally efficient Reynolds-Averaged Navier-Stokes (RANS) research code, with a particular emphasis on the steady and unsteady aerodynamics analysis of complex low speed turbulent flows. Such turbulent flow problems include horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT) operating at design and off-design conditions. On the algorithmic side, the main contribution of this research is the successful development of a rigorous novel approach to low-speed preconditioning (LSP) for the multigrid fully coupled integration of the steady, time-domain and harmonic balance RANS equations coupled to the two-equation shear stress transport (SST) turbulence model. The design of the LSP implementation is such that each part of the code affected by LSP can be validated individually against the baseline solver by suitably specifying one numerical input parameter of the LSP-enhanced code. The thesis has investigated several important issues on modelling and numerical aspects which are seldom thoroughly analysed in the computational fluid dynamics problems of the type presented herein. The first and most important modelling issue is the necessity of applying the low speed preconditioning to both RANS and SST equations and maintaining the turbulent kinetic energy in the definition of the total energy, which, to the best knowledge of author, has never been seen in any published literature so far. Based on the results obtained in the analysis of the vertical axis wind turbine application, we have demonstrated that by preconditioning the SST turbulence equations, one can significantly improve the convergence rate; and keeping the turbulence kinetic energy in the total energy has a great positive effect on the solution accuracy. The other modelling issue to be analysed is the sensitivity of the flow solution to the farfield boundary conditions, particularly for low speed problems. The analyses reported in the thesis highlight that with a small size of the computational domain, the preconditioned farfield boundary conditions are crucial to improve the solution accuracy. As for the numerical aspects, we analyse the impact of using the relative velocity to build the preconditioning parameter on the flow solutions of an unsteady moving-grid problem. The presented results demonstrate that taking into account the grid motion in building the preconditioning parameter can achieve a noticeable enhancement of the solution accuracy. On the other hand, the nonlinear frequency-domain harmonic balance approach is a fairly new technology to solve the unsteady RANS equations, which yields significant reduction of the run-time required to achieve periodic flows with respect to the conventional time-domain approach. And the implementation of the LSP approach into the turbulent harmonic balance RANS and SST formulations is another main novelty presented herein, which is also the first published research work on this aspect. The newly developed low speed turbulent flow predictive capabilities are comprehensively validated in a wide range of tests varying from subsonic flow with slight compressibility to user-defined extremely low speed incompressible flows. The solutions of our research code with LSP technology are compared with experiment data, theoretical solutions and numerical solutions of the state-of-the-art CFD research code and commercial package. The main computational results of this research consist of the analyses of HAWT and VAWT applications. The first one is a comparative analysis of 30% and 93.5% blade sections of a VESTAS multi-megawatt HAWT working in various regimes. The steady, time-domain and frequency-domain results obtained with the LSP solver are used to analyse in great detail the steady and unsteady aerodynamic characteristics in those regimes. The main motivation is to highlight the predictive capabilities and the numerical robustness of the LSP-enhanced turbulent steady, time-domain and frequency domain flow solvers for realistic complex and even more challenging problems, to quantify the effects of flow compressibility on the steady and yawed wind-induced unsteady aerodynamics in the tip region of a 82-m HAWT blade in rated operating condition, and to assess the computational benefits achieved by using the harmonic balance method rather than the conventional time-domain method. The second application is the comparative aerodynamic analyses of the NREL 5MW HAWT working in the inviscid steady flow condition. The main motivation of this analysis is to further demonstrate the predictive capabilities of the LSP solver to simulate the threedimensional wind turbine flows. The last application is the time-domain turbulent flow analysis of the VAWT to the aim of demonstrating the accuracy enhancement of the LSP solver for this particular problem, the necessity of applying the full preconditioning strategy, the important effect of the turbulent kinetic energy on the solution accuracy and the proper implementation of the preconditioning parameter required for an accurate numerical solution to an unsteady moving grid low-speed problem.
机译:本论文报道的研究工作源于精确且计算效率高的雷诺平均Navier-Stokes(RANS)研究代码的开发,尤其着重于复杂低速湍流的稳态和非稳态空气动力学分析。这种湍流问题包括在设计和非设计条件下运行的水平轴风力涡轮机(HAWT)和垂直轴风力涡轮机(VAWT)。在算法方面,这项研究的主要贡献是成功开发出一种严格的新颖的低速预处理方法,用于将稳态,时域和谐波平衡RANS方程耦合到两者的多网格完全耦合集成方程剪切应力传输(SST)湍流模型。 LSP实现的设计是,通过适当地指定LSP增强代码的一个数字输入参数,可以针对基线求解器分别验证受LSP影响的代码的每个部分。本文研究了关于建模和数值方面的几个重要问题,这些问题在本文介绍的计算流体动力学问题中很少进行全面分析。第一个也是最重要的建模问题是必须对RANS和SST方程应用低速预处理,并在总能量的定义中保持湍流动能,据作者所知,这从未见过。迄今为止所有已出版的文献。根据对垂直轴风力发电机应用分析的结果,我们证明了通过预处理SST湍流方程,可以显着提高收敛速度;在总能量中保持湍动能对求解精度有很大的积极影响。要分析的另一个建模问题是流解对远场边界条件的敏感性,特别是对于低速问题。论文中报道的分析结果表明,在计算域较小的情况下,预处理的远场边界条件对于提高求解精度至关重要。对于数值方面,我们分析了使用相对速度建立预处理参数对非定常移动网格问题的流动解的影响。给出的结果表明,在建立预处理参数时考虑网格运动可以显着提高求解精度。另一方面,非线性频域谐波平衡方法是一种解决不稳定RANS方程的相当新的技术,与传统的时域方法相比,该方法显着减少了实现周期性流动所需的运行时间。 LSP方法在湍流谐波平衡RANS和SST公式中的实现是本文介绍的另一个主要新颖性,这也是这方面的首次公开研究工作。新开发的低速湍流预测能力已在广泛的测试中得到了全面验证,这些测试范围从具有轻微可压缩性的亚音速流到用户定义的极低速不可压缩流。我们将使用LSP技术的研究代码的解决方案与最新CFD研究代码和商业软件包的实验数据,理论解决方案和数值解决方案进行了比较。这项研究的主要计算结果包括对HAWT和VAWT应用程序的分析。第一个是对在各种情况下运行的VESTAS多兆瓦HAWT的30%和93.5%叶片截面的比较分析。使用LSP求解器获得的稳态,时域和频域结果用于详细分析这些状态下的稳态和非稳态空气动力特性。主要目的是强调LSP增强的湍流稳态,时域和频域流动求解器的预测能力和数值鲁棒性,以解决实际复杂甚至更具挑战性的问题,以量化流动可压缩性对稳态和偏航的影响在额定工作条件下,风在82米HAWT叶片的尖端区域中引起的非定常空气动力学特性,并评估了使用谐波平衡法而非常规时域法获得的计算效益。第二个应用是在无粘性稳定流动条件下工作的NREL 5MW HAWT的比较空气动力学分析。该分析的主要目的是进一步证明LSP解算器模拟三维风力涡轮机流量的预测能力。最后一个应用是VAWT的时域湍流分析,目的是证明LSP求解器针对此特定问题的精度提高,这是应用完整预处理策略的必要性,湍动能对求解精度的重要影响,以及对不稳定的移动电网低速问题进行精确数值求解所需的预处理参数的正确实现。

著录项

  • 作者

    Yan Minghan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号