首页> 外文OA文献 >On upper modular subalgebras of a Lie algebra.
【2h】

On upper modular subalgebras of a Lie algebra.

机译:在李代数的上模块化子代数上。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is a further contribution to the extensive study by a number of authors of the subalgebra lattice of a Lie algebra. We give some necessary and some sufficient conditions for a subalgebra to be upper modular. For algebraically closed fields of any characteristic these enable us to determine the structure of Lie algebras having abelian upper modular subalgebras which are not ideals. We then study the structure of solvable Lie algebras having an abelian upper modular subalgebra which is not an ideal and which has trivial intersection with the derived algebra; in particular the structure is determined for algebras over the real field. Next we classify non-solvable Lie algebras over fields of characteristic zero having an upper modular atom which is not an ideal. Finally it is shown that every Lie algebra over a field of characteristic different from two and three in which every atom is upper modular is either quasi-abelian or a μ-algebra.
机译:本文是对Lie代数的子代数格的许多作者的广泛研究的进一步贡献。我们给出了使子代数成为上模的一些必要条件和充分条件。对于任何特性的代数封闭场,这些使我们能够确定具有不理想的阿贝尔上模块化子代数的李代数的结构。然后,我们研究具有阿贝尔上模块化子代数的可解李代数的结构,该子代数不是理想的,并且与导出的代数具有微不足道的交点。特别地,确定实场上的代数的结构。接下来,我们将特征为零的具有上模块化原子(不是理想的)的场上的不可解李代数分类。最终表明,在一个不同于两个和三个特征原子的特征域上的每个李代数,其中每个原子都是上模的,它们都是拟阿贝尔代数或μ代数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号