首页> 外文OA文献 >Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems
【2h】

Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems

机译:电磁中边界积分算符的材料导数及其在逆散射问题中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.
机译:本文研究了时谐电磁波散射理论引起的边界积分算符的材料导数分析及其在反问题中的应用。我们使用边界参数的Piola变换在固定的参考边界上传输积分算子,从而提供了新的结果。传输的积分算子在参数化方面是无限可微的,并获得了材料导数的简化表达式。利用这些结果,我们扩展了非线性积分方程方法,该方法用于解决声学反障碍物散射问题对电磁的影响。对于未知边界,将反问题公式化为一对非线性且不适定的积分方程,这些边界方程代表边界条件和测量结果,可应用迭代正则化的高斯-牛顿法。该算法具有一个有趣的特征,它避免了每个迭代步骤的边值问题的大量数值解。在星状障碍物的特殊情况下进行了数值实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号