首页> 外文OA文献 >Failures to Replicate Hyper-Retrieval-Induced Forgetting in Arithmetic Memory
【2h】

Failures to Replicate Hyper-Retrieval-Induced Forgetting in Arithmetic Memory

机译:无法复制算术存储器中的超检索引起的遗忘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Campbell and Phenix (2009) observed retrieval-induced forgetting (RIF) (slower response time) for simple addition facts (e.g., 3 + 4) immediately following 40 retrieval-practice blocks of their multiplication counterparts (3 × 4 = ?). A subsequent single retrieval of the previously unpracticed multiplication problems, however, produced an RIF effect about twice as large for their addition counterparts. Thus, a single retrieval of a multiplication fact appeared to produce much larger RIF of the addition counterpart than did many multiplication retrieval-practice trials. In subsequent similar studies, however, this hyper-RIF effect was not observed (e.g., Campbell & Thompson, 2012). The current studies further investigated hyper-RIF in arithmetic. In Chapter 2 (Experiment 1), composition of operands (unique vs. common) and amount of multiplication practice (6 vs. 20 repetitions of each problem) were manipulated. Participants solved multiplication problems (4 × 7 = ?) and then were tested on their memory for the addition counterparts (4 + 7 = ?) and control additions. Chapter 3 (Experiment 2) attempted an exact replication of Campbell and Phenix. In both studies, hyper-RIF was not observed. The results confirm the basic RIF effect of multiplication retrieval practice on addition counterparts, but cast doubt on the on the reality of the hyper-RIF effect observed by Campbell and Phenix. It is concluded that the hyper-RIF effect reported by Campbell and Phenix is an elusive or non-existent phenomenon; consequently, it cannot at this time be considered an important result in the RIF literature.
机译:Campbell和Phenix(2009)在其乘法对应物的40个检索练习块(3×4 =?)之后立即观察到简单加法事实(例如3 + 4)的检索诱发遗忘(RIF)(响应时间较慢)。然而,随后对先前未实现的乘法问题的单次检索产生的RIF效果是其相加对象的两倍。因此,与许多乘法检索实践试验相比,单次乘法事实检索似乎会产生加法对象的更大的RIF。但是,在随后的类似研究中,未观察到这种超RIF效应(例如,Campbell&Thompson,2012)。当前的研究进一步研究了Hyper-RIF的算法。在第2章(实验1)中,对操作数的组成(唯一vs.通用)和乘法实践的数量(每个问题6到20次重复)进行了操作。参与者解决了乘法问题(4×7 =?),然后在他们的记忆中测试了加法对象(4 + 7 =?)和控件加法。第3章(实验2)尝试对Campbell和Phenix进行精确复制。在两项研究中,均未观察到超RIF。结果证实了乘法检索实践对加法对象的基本RIF效应,但对Campbell和Phenix观察到的hyper-RIF效应的现实性提出质疑。结论是,Campbell和Phenix报道的hyper-RIF效应是一种难以捉摸或不存在的现象。因此,目前不能将其视为RIF文献中的重要结果。

著录项

  • 作者

    Maslany, Anna;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号