首页> 美国政府科技报告 >Long Cycles in Graphs Containing a 2-Factor with Many Odd Components
【24h】

Long Cycles in Graphs Containing a 2-Factor with Many Odd Components

机译:包含具有许多奇数分量的2因子的图中的长循环

获取原文

摘要

The author proves a result on the length of a longest cycle in a graph on n vertices that contains a 2-factor and satisfies d(u) + d(v) + d(w) = or > n + 2 for every triple u, v, w of independent vertices. As a corollary, the author obtains the following improvement of a conjecture of R. Haggkvist: Let G be a 2-connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least max (n - k, 2/3n + 1) and assume G has a 2-factor with at least k - 1 odd components. Then G is hamiltonian.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号