首页> 美国政府科技报告 >Extending the Turbidity Record-Making Additional Use of Continuous Data From Turbidity, Acoustic-Doppler, and Laser Diffraction Instruments and Suspended-Sediment Samples in the Colorado River in Grand Canyon.
【24h】

Extending the Turbidity Record-Making Additional Use of Continuous Data From Turbidity, Acoustic-Doppler, and Laser Diffraction Instruments and Suspended-Sediment Samples in the Colorado River in Grand Canyon.

机译:扩大浊度记录 - 在大峡谷的科罗拉多河中额外使用来自浊度,声学多普勒和激光衍射仪器以及悬浮沉积物样品的连续数据。

获取原文

摘要

Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860-30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full range of sediment concentrations in the study area using data from the ADP instruments is particularly useful for biological studies. In Grand Canyon, turbidity has been correlated with food availability for aquatic organisms (gross primary production) as well as with fish behavior specific to predator-prey interactions.

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号